Кафедра гуманитарно-педагогических и естественнонаучных дисциплин

УТВЕРЖДАЮ: Декан факультета экономики _____/Е.С.Пожидаева «30» сентября 2020 г

Рабочая программа факультативной дисциплины

Математический анализ Направление подготовки 38.03. 01 Экономика

(уровень бакалавриата)

Направленность/профиль: «Экономика организаций»

Формы обучения: очная, заочная

Москва

Рабочая программа факультативной дисциплины «Математический анализ». Направление подготовки 38.03.01 Экономика 9/ сост. A.C. Скотченко - М. : ИМПЭ им. A.C. Грибоедова, 2020.-42 с.

Рабочая программа составлена на основании Федерального государственного образовательного стандарта высшего образования по направлению подготовки 38.03.01 Экономика (уровень бакалавриата), утвержденного Приказом Министерстве образования и науки Российской Федерации от 12 ноября 2015 г. N 1327

Разработчики:	к.т.н., доцент А.С. Скотченко
	канд. эконом. наук, доцент, доцент кафедры
Ответственный рецензент:	бухгалтерского учета, аудита и налогообложения ФГБОУ
	ВО «Государственный университет управления»
	О.С. Дьяконова
* *	ециплины рассмотрена и одобрена на заседании кафедры ятельности от 23.09.2020 г., протокол № 1.
Завелующий кафелрой	/ д.э.н, проф. А.А. Панарин
	(подпись)
Согласовано от Библиотеки	
	(подпись)
Согласовано от Работодателей:	
Генеральный директор	
ООО «Аквилониум»	Комаров С.Г.
Генеральный директор	Акимов Н.В.
ООО «МАРК ЭНД ОУКС РИЛ	

Раздел 1. Цели и задачи освоения дисциплины

Дисциплина «Математический анализ» является естественно-научным курсом, входящим в стандарт математических дисциплин, изучаемых при обучении по специальности «Экономика».

Цель изучения дисциплины «Математический анализ» — формирование у будущих бакалавров современных представлений о методах решения основных задач математического анализа, их связях с другими математическими дисциплинами, а также знакомство с приложениями методов математического анализа к экономическим задачам.

Задачами дисциплины «Математический анализ» являются изучение теории пределов, дифференциального исчисления функций одного и нескольких переменных, интегрального исчисления функции одного переменного.

Место дисциплины в профессиональной подготовке. В процессе изучения дисциплины «Математический анализ» обучающиеся приобретают фундаментальные знания об основных методах математического анализа и их применении в различных экономических областях.

Раздел 2. Планируемые результаты обучения по дисциплине соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Математический анализ» направлен на формирование следующих компетенций, которые позволят усваивать теоретический материал дисциплины и реализовывать практические задачи (таблица 2.1) и достигать планируемые результаты обучения по дисциплине.

Компетентностная карта дисциплины

Таблица 2.1

Индекс	Содержание	Планируемые результаты обучения
по ФГОС	компетенции	по дисциплине (модулю):
ВО		(знания, умения, навыки)
ФК-3	способность строить примеры основных математических моделей в математическом анализе, пользоваться построением математических моделей для решения практических проблем.	Знать: - способы построения основных математических моделей в математическом анализе; - методы и способы построения математических моделей для решения практических проблем; Уметь: - использовать в экономической практике способы построения основных математических моделей в математическом анализе; - использовать в экономической практике способы построения математических моделей для решения практических проблем;; Владеть: - способами построения основных математических моделей в математическом анализе;
		- методами и способами построения математических моделей для решения практических проблем.

РАЗДЕЛ 3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ БАКАЛАВРИАТА

Дисциплина «Математический анализ» входит в состав факультативных дисциплин основной образовательной программы бакалавриата по направлению подготовки 38.03.01 Экономика.

Дисциплина «Математический анализ» опирается на знания, полученные при изучении школьного курса «Математика». Изучение дисциплины «Линейная алгебра» поможет в освоении следующих дисциплин: «Бухгалтерский учет и анализ», «Деньги. Кредит. Банки», «Статистика», «Финансы», «Эконометрика», «Налоги и налогообложение», «Основы финансовой математики», «Ценообразование».

Указанные связи и содержание дисциплины «Математический анализ» дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает соответственный теоретический уровень и практическую направленность в системе обучения будущей деятельности бакалавра экономики.

РАЗДЕЛ 4. ОБЪЕМ (ТРУДОЕМКОСТЬ) ДИСЦИПЛИНЫ (ОБЩАЯ, ПО ВИДАМ , ВИДАМ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ)

Таблица 4.1

Трудоемкость дисциплины и виды учебной работы на очной форме обучения

3.e.	Всего		Контакт	гная работа		Часы СР	Иная	Контро
	часов	Заняти	Занятия се	еминарского	Контакт	на	CP	ЛЬ
		Я	T	ипа	ная	подгото		
		лекцио			работа	вку		
		нного			по	кур.раб.		
		типа			курсово			
			Лаборатор	Практически	й работе			
			ные	e/				
				семинарские				
				2 семестр				
2	72	12	_	10	_		48	2
	12	12	_	10	_	_	70	зачет
	Всего по дисциплине							
2	72	12	_	10	-	-	48	2

Таблица 4.2

Трудоемкость дисциплины и виды учебной работы на заочной форме обучения

3.e.	Всего		Контак	гная работа		Часы СР	Иная	Конт
	часов	Заняти	Занятия се	еминарского	Контакт	на	CP	роль
		R	типа		ная	подгото		
		лекцио			работа	вку		
		нного			по	кур.раб.		
		типа			курсово			
			Лаборатор	Практически	й работе			
			ные	e/				

				семинарские				
	2 семестр							
2	72	4	-	4	-	-	60	4/зачет
Всего по дисциплине								
2	72	4	-	4	-	-	60	4

Структура и содержание дисциплины

Перечень разделов(модулей), тем дисциплины и распределение учебного времени по разделам/темам дисциплины, видам учебных занятий (в т.ч. контактной учебной работы), видам текущего контроля

Таблица 4.3

Распределение нагрузки по разделам дисциплины на очной форме обучения

	Ко	ая рабо	га		Ина я СР	Контро ль		
Темы\ разделы(модули)	Занятия лекционно	Занятия семинарско го типа		Контактн ая работа			Часы СР на подготов	Всег о часо
,	го типа	Лаб. р	Прак /сем.	по кур.р.	ку кур.р.			В
Введение в анализ	2		2			8		12
Дифференциаль ное исчисление функции одного переменного	2		2			8		12
Интегральное исчисление функции одного переменного	4		4			16		24
Функции нескольких переменных	4		2			16		24
Зачет							2	2
Всего часов	12		10			48	2	72

Таблица 4.4

Распределение нагрузки по разделам дисциплины на заочной форме обучения

Темы∖	Контактная работа	Часы СР	Ина	Контро	Всег
разделы(модули	Контактная расота	на	Я	ЛЬ	0

)	Занятия семинарско го типа		Контактн ая работа	подготов ку кур.р.	СР		часо в	
	го типа	Лаб. р	Прак /сем.	по кур.р.				
Введение в анализ	1		1			10		12
Дифференциаль ное исчисление функции одного переменного	1		1			10		12
Интегральное исчисление функции одного переменного	1		1			20		22
Функции нескольких переменных	1		1			20		22
Зачет							4	4
Всего часов	12		12			60	4	72

Таблица 4.5

	Содержание разделов дисциплины				
№ п/п	Наименование раздела\темы	Содержание раздела дисциплины			
1	Введение в анализ	Понятие числовой последовательности и ее предела. Свойства числовых последовательностей и пределов. Критерий сходимости числовой последовательности. Понятие окрестности точки \mathbf{a} . Понятие предела функции при $\mathbf{x} \to \mathbf{a}$. Свойства пределов. Понятие предела функции при $\mathbf{x} \to \infty$. Бесконечно малые и бесконечно большие функции. Односторонние пределы. Первый и второй замечательные пределы. Число \mathbf{e} . Понятие непрерывности функции в точкеи на отрезке. Свойства непрерывных функций. Односторонняя непрерывность и точки разрыва. Свойства функций, непрерывных на отрезке.			
2	Дифференциальное исчисление функции одного переменного	Производная функции в точке, ее механический и геометрический смысл. Касательная к графику функции. Экономический смысл производной. Эластичность функции. Вычисление производной. Производные основных элементарных функций. Теоремы о производной. Производная суммы функций, их произведения и частного. Производная сложной функции. Логарифмическая производная. Производная обратной функции. Понятие дифференциала функции. Производные высших порядков. Основные теоремы о дифференцируемых функциях: теоремы Роля, Лагранжа,			

	T						
		Коши. Формула Тейлора, остаточный член в форме					
		Лагранжа и в форме Коши. Правило Лопиталя.					
		Исследование функции на выпуклость и вогнутость.					
		Необходимое и достаточное условия выпуклости дважды					
		дифференцируемой функции. Исследование функции на					
		экстремум.					
3	Интегральное	Понятие первообразной функции. Понятие					
	исчисление функции	неопределенного интеграла, его свойства. Таблица					
	одного переменного	интегралов. Основные приемы интегрирования (замена					
		переменных, интегрирование по частям). Понятие					
		интегральной суммы Дарбу. Понятие определенного					
		интеграла. Необходимое условие интегрируемости					
		функции. Свойства определенного интеграла. Интеграл					
		как функция верхнего предела. Формула Ньютона-					
		Лейбница. Основные приемы вычисления определенного					
		интеграла. Приложения определенного интеграла для					
		вычисления площади плоской фигуры, длины дуги					
		кривой, площади поверхности вращения и объема тела					
		вращения. Понятие несобственного интеграла. Основные					
		приемы вычисления несобственного интеграла.					
4	Функции нескольких	Функции нескольких переменных, их непрерывность.					
	переменных	Частные производные и дифференциалы функций					
		нескольких переменных. Экстремум функции многих					
		переменных. Необходимое и достаточное условие					
		локального экстремума. Условный экстремум.					
		Нахождение условного экстремума функции. Метод					
		множителей Лагранжа.					

ЗАНЯТИЯ СЕМИНАРСКОГО ТИПА

Практические занятия

Общие рекомендации по подготовке к практическим занятиям

Практические занятия представляют особую форму сочетания теории и практики. Их назначение — углубление проработки теоретического материала предмета путем регулярной и планомерной самостоятельной работы обучающихся на протяжении всего курса. Процесс подготовки к практическим занятиям включает изучение обязательной и дополнительной литературы по рассматриваемому вопросу. Непосредственное проведение практического занятия предполагает, например:

- индивидуальные выступления обучающихся с сообщениями по какому-либо вопросу изучаемой темы;
- фронтальное обсуждение рассматриваемой проблемы, обобщения и выводы;
- решение задач и упражнений по образцу;
- решение вариантных задач и упражнений;
- проектирование и моделирование разных видов и компонентов профессиональной деятельности.
- выполнение контрольных работ;
- работу с тестами.

При подготовке к практическим занятиям студентам рекомендуется: внимательно ознакомиться с тематикой практического занятия; прочесть конспект лекции по теме, изучить рекомендованную литературу; составить краткий план ответа на каждый вопрос

практического занятия; проверить свои знания, отвечая на вопросы для самопроверки. Практические занятия развивают у обучающихся навыки самостоятельной работы по решению конкретных задач.

для очной формы обучения Тема № 1 Введение в анализ

Содержание практического занятия

Бесконечно малые и бесконечно большие функции. Односторонние пределы. Первый и второй замечательные пределы. Число е. Понятие непрерывности функции в точкеи на отрезке. Свойства непрерывных функций. Односторонняя непрерывность и точки разрыва. Свойства функций, непрерывных на отрезке.

Литература:

Основная № 1, 2, 3 Дополнительная № 1, 2, 3, 4

Тема № 2

Дифференциальное исчисление функции одного переменного

Содержание практического занятия

Правило Лопиталя. Исследование функции на выпуклость и вогнутость. Необходимое и достаточное условия выпуклости дважды дифференцируемой функции. Исследование функции на экстремум.

Литература:

Основная № 1, 2, 3 Дополнительная № 1, 2, 3, 4

Тема № 3

Интегральное исчисление функции одного переменного

Содержание практического занятия

Приложения определенного интеграла для вычисления площади плоской фигуры, длины дуги кривой, площади поверхности вращения и объема тела вращения. Понятие несобственного интеграла. Основные приемы вычисления несобственного интеграла.

Литература:

Основная № 1, 2, 3 Дополнительная № 1, 2, 3, 4

Тема № 4

Функции нескольких переменных

Содержание практического занятия

Необходимое и достаточное условие локального экстремума. Условный экстремум. Нахождение условного экстремума функции. Метод множителей Лагранжа.

Литература:

Основная № 1, 2, 3 Дополнительная № 1, 2, 3, 4

для заочной формы обучения

Тема № 1 Введение в анализ

Содержание практического занятия

Бесконечно малые и бесконечно большие функции. Односторонние пределы. Первый и второй замечательные пределы. Число е. Понятие непрерывности функции в точкеи на отрезке. Свойства непрерывных функций. Односторонняя непрерывность и точки разрыва. Свойства функций, непрерывных на отрезке.

Литература:

Основная № 1, 2, 3 Дополнительная № 1, 2, 3, 4

Тема № 2

Дифференциальное исчисление функции одного переменного

Содержание практического занятия

Правило Лопиталя. Исследование функции на выпуклость и вогнутость. Необходимое и достаточное условия выпуклости дважды дифференцируемой функции. Исследование функции на экстремум.

Литература:

Основная № 1, 2, 3 Дополнительная № 1, 2, 3, 4

Тема № 3

Интегральное исчисление функции одного переменного

Содержание практического занятия

Приложения определенного интеграла для вычисления площади плоской фигуры, длины дуги кривой, площади поверхности вращения и объема тела вращения. Понятие несобственного интеграла. Основные приемы вычисления несобственного интеграла.

Литература:

Основная № 1, 2, 3 Дополнительная № 1, 2, 3, 4

Тема № 4

Функции нескольких переменных

Содержание практического занятия

Необходимое и достаточное условие локального экстремума. Условный экстремум. Нахождение условного экстремума функции. Метод множителей Лагранжа.

Литература:

Основная № 1, 2, 3 Дополнительная № 1, 2, 3, 4

Раздел 5. Образовательные технологии

В целях реализации компетентностного подхода в учебном процессе дисциплины «Математический анализ» предусматривается использование активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой. К формам внеаудиторной работы относятся задания для рубежного контроля, а к активным формам контрольные работы.

Интерактивные образовательные технологии, используемые на аудиторных практических занятиях

Таблица 5.1

Очная форма обучения

Наименование	Используемые образовательные	Часы
разделов, тем	технологии	

	1	2
	• фронтальный опрос (преподаватель обучает	2
Тема 1.	одновременно всю группу);	
Введение в	• решение задач по теме у доски (обучающиеся	
анализ	указывают на ошибки отвечающего)	
	• индивидуальная (самостоятельная работа учащихся).	
Тема 2.	• фронтальный опрос (преподаватель обучает	2
Дифференциаль	одновременно всю группу);	
ное исчисление	• решение задач по теме у доски (обучающиеся	
функции одного	указывают на ошибки отвечающего)	
переменного	• индивидуальная (самостоятельная работа учащихся).	
Тема 3.	• фронтальный опрос (преподаватель обучает	2
Интегральное	одновременно всю группу);	
исчисление	• решение задач по теме у доски (обучающиеся	
функции одного	указывают на ошибки отвечающего)	
переменного	• индивидуальная (самостоятельная работа учащихся).	
T 4	• фронтальный опрос (преподаватель обучает	2
Тема 4.	одновременно всю группу);	
Функции	• решение задач по теме у доски (обучающиеся	
нескольких	указывают на ошибки отвечающего)	
переменных	• индивидуальная (самостоятельная работа учащихся).	

Таблица 5.2

Заочная форма обучения

Наименование	Используемые образовательные	Часы
разделов, тем	технологии	
	• фронтальный опрос (преподаватель обучает	1
Тема 1.	одновременно всю группу);	
Введение в	• решение задач по теме у доски (обучающиеся	
анализ	указывают на ошибки отвечающего)	
	• индивидуальная (самостоятельная работа учащихся).	
Тема 2.	• фронтальный опрос (преподаватель обучает	1
Дифференциаль	одновременно всю группу);	
ное исчисление	• решение задач по теме у доски (обучающиеся	
функции одного	указывают на ошибки отвечающего)	
переменного	• индивидуальная (самостоятельная работа учащихся).	
Тема 3.	• фронтальный опрос (преподаватель обучает	1
Интегральное	одновременно всю группу);	
исчисление	• решение задач по теме у доски (обучающиеся	
функции одного	указывают на ошибки отвечающего)	
переменного	• индивидуальная (самостоятельная работа учащихся).	
Taxa 4	• фронтальный опрос (преподаватель обучает	1
Тема 4.	одновременно всю группу);	
Функции	• решение задач по теме у доски (обучающиеся	
нескольких	указывают на ошибки отвечающего)	
переменных	• индивидуальная (самостоятельная работа учащихся).	

ПРАКТИКУМ

Исследование функций и построение графиков

№ Bap	1-ая функция	2-ая функция	3-я функция	4-ая функция
-------	--------------	--------------	-------------	--------------

	ı			-
1.	$y = \frac{1 - 3x^2}{x^3}$	$y = \frac{x+1}{x^2+1}$	$y = e^{\frac{1}{x}} - x$	y = -arcctgx - x
2.	$y = \frac{x^8}{x^7 + 1}$	$y = \frac{x^3 + 3x^2 + 7x - 3}{2x^2}$	$y = \frac{x}{\ln^3 x}$	$y = \frac{1}{x\sqrt{1 - x^2}}$
3.	$y = -\frac{x^7}{(x-2)^6}$	$y = \frac{(x-3)^2}{4(x-1)}$	$y = \frac{x^2}{\sqrt[3]{(x^3 - 4)^2}}$	$y = xe^{-x}$
4.	$y = -\frac{x}{\left(x - 2\right)^4}$	$y = \frac{\left(x-1\right)^2}{x^2 + 1}$	$y = e^{\frac{1}{x-1}}$	$y = \sqrt[3]{1 - x^3}$
5.	$y = \frac{1 - x^3}{x^6}$	$y = \frac{x^7}{(x+1)^6}$	$y = \frac{3\ln x}{\sqrt{x}}$	$y = xe^{-2x^2}$
6.	$y = \frac{x^4}{\left(x - 1\right)^4}$	$y = -\frac{x^{10}}{x^{10} + 3}$	$y = \frac{x^2}{\sqrt[3]{x^3 + 1}}$	$y = x^2 \ln x$
7.	$y = -\frac{x^6}{\left(1 - x\right)^6}$	$y = \frac{x^4 - 2}{x^4 - 3}$	$y = (x+2)e^{\frac{1}{x}}$	$y = \frac{\ln x}{x^2}$
8.	$y = \frac{2x^2 - 1}{x^4}$	$y = \frac{x^2 - x - 1}{x^2 - 2x}$	$y = \sqrt[3]{x^2} \left(x - 5 \right)$	
9.	$y = -\frac{x^7 + 3}{x^7 + 1}$	$y = \frac{x^3}{\left(x - 1\right)^2}$	$y = xe^{\frac{1}{2-x}}$	$y = \frac{\ln^2 x}{x}$
10.	$y = -\frac{x^6}{x^5 + 1}$	$y = \frac{x^3 + 2}{2x}$	$y = \sqrt[3]{12x - 4x^3}$	$y = \frac{1}{x \ln x}$
11.	$y = \frac{x^3 + 1}{x^3}$	$y = \frac{3x^2 - 4x - 2}{x^2}$	$y = \sqrt[3]{\frac{x-1}{x+1}}$	$y = \ln(x^2 - 2x + 2)$
12.	$y = \frac{x^8}{x^7 - 1}$	$y = \frac{x^2(x-1)}{(x+1)^2}$	$y = \frac{\ln x}{x}$	y = arctgx - x
13.	$y = -\frac{x}{(x-1)^8}$	$y = \frac{(x+1)^3}{(x-1)^2}$	$y = x^3 e^x$	$y = \sqrt{x^3 - 4x}$
14.	$y = \frac{1 - x^4}{x^5}$	$y = -\frac{x^9}{x^9 + 1}$	$y = \sqrt[3]{4x^3 - 12x}$	$y = \frac{x^2}{\ln x}$
15.	$y = \frac{x^5}{1 + x^6}$	$y = \frac{x}{\left(x^2 - 1\right)^2}$	$y = \frac{x}{\ln x}$	$y = \sqrt[3]{\left(x^2 - 1\right)^2}$

16.	$(-1)^2$ 1	7	3x	y = x + 2arcctgx
10.	$y = \frac{(x-1)^2}{2} + \frac{1}{x-1}$	$y = \frac{x^7}{x^7 + 1}$	$y = x^3 e^{-x}$	y x + 2ur ceigu
17.	$y = \frac{x^3}{3 - x^2}$	$y = \frac{2x-1}{\left(x-1\right)^2}$	$y = \sqrt[3]{(x-1)^2(x+1)}$	$y = \frac{\ln^2 x}{x^2}$
18.	$y = -\frac{x^7}{1 + x^6}$	$y = \frac{x^4}{x^3 - 1}$	$y = (1 + x^2)e^x$	$y = \sqrt[3]{\frac{x^2}{x+1}}$
19.	$y = \frac{x^7}{\left(x+1\right)^8}$	$y = x - 1 + \frac{4}{x^2}$	$y = x^{2/3}e^{-x}$	$y = arcctgx^2$
20.	$y = \frac{x^8}{(x-1)^7}$	$y = \frac{2x}{1+x^2}$	y = x + 2arctgx	$y = xe^{\frac{1}{1-x}}$
21.	$y = \frac{x^5 - 1}{x^5 - 2}$	$y = \frac{x^2 + 3}{x + 1}$	$y = (x-1)e^{3x+1}$	$y = \sqrt[3]{x^2(x^2 - 3)^2}$
22.	$y = \frac{x^6}{(x+1)^7}$	$y = 5 - \frac{2}{x} - x^2$	$y = \frac{1}{2} \ln \frac{1+x}{1-x}$	$y = \frac{1}{x}e^{-\frac{1}{x^2}}$
23.	$y = \frac{x^7}{\left(x+1\right)^9}$	$y = \frac{x^6}{1 - x^5}$	$y = xe^{-\frac{x^2}{2}}$	$y = \sqrt[3]{6x^2 - x^3}$
24.	$y = \frac{x^7}{x^9 + 2}$	$y = \frac{x}{(x+1)^2}$	$y = x \ln x$	$y = \sqrt[3]{x^2 - 1}$
25.	$y = \frac{x^3}{\left(x+1\right)^6}$	$y = \frac{1 - x^2}{x^4}$	$y = x^2 e^{-x}$	$y = \frac{x^2}{\sqrt[3]{(x^3 + 8)^2}}$

Интегральное исчисление

Вариант А

1.
$$\int \frac{xdx}{1+x^4}$$
2.
$$\int \frac{5x-3}{\sqrt{-x^2+4x+5}} dx$$
3.
$$\int e^{3x} \sin 4x dx$$
4.
$$\int \frac{6x^2-13x+4}{x^3-3x^2+2x} dx$$

$$5. \int_{0}^{\frac{\pi}{3}} \frac{dx}{2 + 2\sin x + 2\cos x}$$

6.
$$\int_{2\sqrt{2}}^{4} \frac{dx}{x^2 \sqrt{x^2 - 4}}$$

7. Вычислить длину дуги кривой y=lnx от x=1 до x= $\sqrt{3}$.

Вариант Б

$$1.\int \frac{e^{\arcsin 3x}}{\sqrt{1-9x^2}} dx$$

2.
$$\int \frac{2x+3}{\sqrt{7-6x-x^2}} dx$$

$$\int x^2 e^{4x} dx$$

$${}_{4.}\int \frac{4x^3 + 9x^2 + 4x + 3}{\left(x+1\right)^2 \left(x^2 + 1\right)} dx$$

$$5. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{3 + 2\sin x + 2\cos x}$$

$$\int_{0}^{\sqrt{5}} \sqrt{x^2 + 4} dx$$

7. Найти объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной 2

_{линиями}
$$y = \frac{2}{x}$$
 и $y = 3 - x$.

Ответы к вариантам (Интегральное исчисление)

Вариант А

1.
$$\frac{1}{2}arctgx^2 + C$$

2.
$$-5\sqrt{-x^2+4x+5}+7 \arcsin \frac{x-2}{3}+C$$

3.
$$-\frac{4}{25}e^{3x}\cos 4x + \frac{3}{25}e^{3x}\sin 3x + C$$

4.
$$2\ln|x| + 3\ln|x - 1| + \ln|x - 2| + C$$

5.
$$tg \frac{x}{2} = t; \frac{1}{2} \ln \left| 4 + 4t \right|_{0}^{\frac{\sqrt{3}}{3}} = \frac{1}{2} \ln \left(1 + \frac{\sqrt{3}}{3} \right)$$

6.
$$\frac{1}{4x}\sqrt{x^2-4}\bigg|_{2\sqrt{2}}^4 = \frac{1}{8}\left(\sqrt{3}-\sqrt{2}\right)$$

7.
$$2-\sqrt{2}+\frac{1}{2}\ln\left(1+\frac{2}{3}\sqrt{2}\right)$$

Вариант Б

1.
$$\frac{1}{3}e^{\arcsin 3x} + C$$

2.
$$-2\sqrt{7-6x-x^2}-3\arcsin\frac{x+3}{4}+C$$

3.
$$\frac{1}{4}x^2e^{4x} - \frac{1}{8}xe^{4x} + \frac{1}{32}e^{4x} + C$$

4.
$$-\frac{2}{x+1} + \ln|x+1| + \frac{3}{2}\ln(x^2+1) + C$$

5.
$$2arctg\left(2 + tg\frac{x}{2}\right)\Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 2arctg3 - \frac{\pi}{2}$$

6.
$$\frac{1}{2}x\sqrt{4+x^2} + 2\ln\left|x + \sqrt{x^2 + 4}\right|_0^{\sqrt{5}} = \frac{3}{2}\sqrt{5} + \ln\frac{\sqrt{5} + 3}{2}$$

7.
$$\frac{\pi}{3}$$

Раздел **6.** Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине

Наряду с проведением практических занятий неотъемлемым элементом учебного процесса является *самостоятельная работа*. При самостоятельной работе достигается целенаправленное усвоение учебного материала, приобретаются практические навыки работы с компьютерными программами столь важные для дальнейшей успешной деятельности обучающегося. Формы самостоятельной работы обучающихся весьма разнообразны. В домашних условиях самостоятельная работа обучающихся включает работу с материалами Практикума, а также с дополнительными заданиями по указанию преподавателя.

Таблица 6.1

Самостоятельная работа

Наименование	Вопросы, выносимые
разделов, тем	на самостоятельное изучение
Тема 1. Введение в анализ	Предел функции (определение Коши, определение Гейне), его свойства. Бесконечно малые и бесконечно большие. Асимптоты (вертикальные, горизонтальные, наклонные).
Тема 2.	Производная неявной функции. Производная функции, заданной
Дифференциальное	параметрически. Геометрический и механический смысл
исчисление функции	производной. Касательная и нормаль. Дифференциал.
одного переменного	
Тема 3. Интегральное	Криволинейный интеграл 1-го рода.
исчисление функции	Криволинейный интеграл 2-го рода.
одного переменного	Интеграл Римана по прямоугольной замкнутой области, стороны
одного переменного	которой параллельны осям координат.
	Функции двух переменных. Предел функции. Непрерывность.
Тема 4. Функции	Частные производные. Градиент как аналог производной
нескольких переменных	функции. Градиент и антиградиент, их отношение к линиям
	уровня.

6.1. Темы эссе¹

Числовые системы.

Метод математической индукции.

Функции одной переменной.

Предел числовой последовательности.

Предел функции.

Непрерывность функции.

Точки разрыва функции.

Геометрический смысл производной.

Физический смысл производной.

Дифференциал. Приближенные формулы.

Монотонно возрастающие и монотонно убывающие функции.

Применение производных.

Асимптоты.

Выпуклость, точки перегиба.

Линия уровня.

Градиент.

Производная функции нескольких переменных по направлению вектора.

 $^{^{1}}$ Перечень тем не является исчерпывающим. Студент может выбрать иную тему по согласованию с преподавателем.

Первообразная

Неопределенный интеграл.

Основные методы интегрирования.

Интегрирование рациональных функций.

Интегрирование иррациональных функций.

Интегрирование тригонометрических функций.

Определенный интеграл.

Геометрические и физические применения определенного интеграла.

Несобственный интеграл.

Числовой ряд.

Признаки сходимости положительных рядов.

Степенные ряды.

Радиус сходимости.

Вычисление интегралов с помощью рядов.

Приближенное вычисление определенных интегралов.

6.2. Примерные задания для самостоятельной работы

1. Найти
$$\lim_{x \to \frac{1}{2}} \left(\frac{8x^3 - 1}{6x^2 - 5x + 1} \right)$$
.

2. Найти
$$\lim_{x\to 2} \left(\frac{1}{x(x-2)^2} - \frac{1}{x^2 - 3x + 2} \right)$$
.

3. Найти
$$\lim_{x\to 0} \left(\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4} \right)$$
.

4. Найти
$$\lim_{x\to 0} \left(\frac{\sin 4x}{\sqrt{x+1}-1}\right)$$
.

5. Найти
$$\lim_{x\to 0} \frac{1-\cos 2x + \operatorname{tg}^2 x}{x\sin x}.$$

6. Найти
$$\lim_{x\to+\infty} \left(x-\sqrt{x^2-x+1}\right)$$
.

7. Найти
$$\lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2} \right) \operatorname{tg} x$$
.

8. Найти
$$\lim_{x\to -1} \cos\left(\frac{\pi(x+1)}{\sqrt[3]{x}+1}\right)$$
.

9. Найти
$$\lim_{x\to\infty} \left(\frac{x}{x+3}\right)^{x-5}$$
.

10. Найти
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x}$$
.

11. Найти
$$\lim_{x\to\infty} (x(\ln(x-2)-\ln x))$$
.

12. Найти
$$\lim_{x\to 0} \left(\frac{\cos x}{\cos 2x}\right)^{\frac{1}{x^2}}.$$

13. Найти
$$\lim_{x\to 0+0} (\ln x \ln(1-x))$$
.

14. Найти производную функции
$$f(x) = 3\sin^2(1-5x)$$
, пользуясь определением.

15. Найти производную функции
$$f(x) = 3e^{2x-x^2}$$
, пользуясь определением.

16. Найти производную функции
$$f(x) = 3x^3 - 2x^2 + 3x - 1$$
, пользуясь определением.

15

- 17. Найти производную функции $x^4 + y^4 = x^2y^2$, заданной неявно.
- 18. Найти производную функции $x \sin y \cos y + \cos 2y = 0$, заданной неявно.
- 19. Найти производную функции $y = x + \operatorname{arctg} y$, заданной неявно.
- 20. Найти производную от у по х, если $\begin{cases} x = e^t \sin t, \\ y = e^t \cos t. \end{cases}$ 21. Найти производную от у по х, если $\begin{cases} x = \frac{1+t^3}{t^2-1}, \\ y = \frac{t}{t^2-1}. \end{cases}$
- 22. Найти производную от функцииу по аргументу x, если $y = (\sin 3x)^{\cos 5x}$.
- 23. Найти производную от функцииу по аргументу х, если

$$y = \sqrt{\frac{\cos x^2 + 1}{\sin 2x + 1}}$$

- 24. Найти производную от функцииу по аргументу x, если $y = \sin(x^5 tg^2 x)$.
- 25. Найти угол, под которым пересекаются кривые $y = \frac{x+1}{x+2}$ и $y = \frac{x^2+4x+8}{16}$.
- 26. Найти угол, под которым пересекаются кривые $y = x^2$ и $\begin{cases} x = \frac{5}{3}\cos t, \\ y = \frac{5}{4}\sin t. \end{cases}$
- 27. Найти вторую производную функции $y = \cos^2 x$.
- 28. Найти вторую производную функции $y = \ln \left(x + \sqrt{1 + x^2} \right)$.
- 29. Найти вторую производную функции $x^2 + y^2 = 16$, заданной неявно.
- 30. Исследовать функцию на непрерывность и построить ее график, если

$$f(x) = \begin{cases} \sqrt{1-x} & \text{при} & x \le 0, \\ 0 & \text{при} & 0 < x \le 2, \\ x-2 & \text{при} & x > 2. \end{cases}$$

- 31. Исследовать функцию $y = 2^{\frac{5}{1-x}} 1$ на непрерывность в точках $x_1 = 0$, $x_2 = 1$.
- 32. Найти предел, используя правило Лопиталя: $\lim_{x\to 0} \frac{\operatorname{tg} x x}{x \sin x}$.
- 33. Найти предел, используя правило Лопиталя: $\lim_{x\to 3} \left(\arcsin\left(\frac{x-3}{3}\right) \operatorname{ctg}(x-3)\right)$.
- 34. Найти предел, используя правило Лопиталя: $\lim_{x\to 1} \left(\frac{1}{\ln x} \frac{x}{\ln x} \right)$.
- 35. Найти предел, используя правило Лопиталя: $\lim_{x \to \frac{\pi}{4}} \frac{\frac{1}{\cos^2 x} 2 \operatorname{tg} x}{1 + \cos 4x}$.
- 36. Найти предел, используя правило Лопиталя: $\lim_{x\to 0} (x \ln x)$.
- 37. Найти предел, используя правило Лопиталя: $\lim_{x \to \frac{\pi}{4}} (\operatorname{tg} x)^{\operatorname{tg} 2x}$.
- 38. Найти предел, используя правило Лопиталя: $\lim_{x \to 1} (x-1)^{x-1}$.

- 39. Найти предел, используя правило Лопиталя: $\lim_{x\to\infty} x \left(\ln(2+x) \ln(x+1)\right)$.
- 40. Найти наибольшее и наименьшее значение функции $y = \frac{2x-1}{(x-1)^2}$ на отрезке [-0,5;0].
- 41. Провести полное исследование функции $y = x \ln^2 x$ и построить ее график.
- 42. Провести полное исследование функции $y = \frac{x^3}{9 x^3}$ и построить ее график.
- 43. Провести полное исследование функции $y = (x+2)e^{1-x}$ и построить ее график.
- 44. Провести полное исследование функции $y = x^2 2 \ln x$ и построить ее график.
- 45. Провести полное исследование функции $y = e^{1/(2-x)}$ и построить ее график.
- 46. Провести полное исследование функции $y = \frac{(1-x)^3}{(x-2)^2}$ и построить ее график.
- 47. Найти частные производные первого и второго порядка от функции $z = x^5 + y^5 5x^3y^3$.
- 48. Найти частные производные первого и второго порядка от функции $z = e^{-\frac{\hat{y}}{y}}$
- 49. Найти частные производные первого и второго порядка от функции $z = x^y$.
- 50. Найти полный дифференциал функции $z = \sqrt{x^2 + y^3}$ и с его помощью вычислить приближенно $\sqrt{1,02^2 + 1,97^3}$.
- 51. Найти полный дифференциал функции $z = \ln(x^3 + y^2)$ и с его помощью вычислить приближенно $\ln(0.05^3 + 0.97^2)$.
- 52. Найти экстремумы функции $z = x^2 + y^2 + xy 3x 6y$.
- 53. Найти экстремумы функции $z = 2 \sqrt[3]{x^2 + y^2}$.
- 54. Для поверхности $z = 4x xy + y^2$ найти уравнение касательной плоскости и нормали в точке M(-1;0;-4).
- 55. Найти уравнение касательной плоскости и нормали к поверхности $z = \sin x \cos y$ в $\frac{\pi}{\pi} \frac{\pi}{\pi} \frac{1}{1}$

точке
$$M(\frac{\pi}{4}; \frac{\pi}{4}; \frac{1}{2}).$$

- 56. Найти производную функции $u = x^2 + y^2 z^3 + 2x yz + 5$ в точке
- M(1;-1;2) в направлении вектора $\vec{l}(3;-2;-6)$.
- 57. Найти угол между градиентами функции $z = \ln \sqrt{x^2 + y^2}$ в точках M(1;1), N(2;2).
- 58. Найти $\int \frac{x-1}{3x^2+2x+1} dx$.
- 59. Найти $\int \frac{x+4}{\sqrt{2-x-x^2}} dx$.
- 60. Найти $\int x \cos 2x dx$.
- 61. Найти $\int x^3 e^{-x} dx$.

62. Найти
$$\int (x^2 - x + 1) \ln x dx$$
.

63. Найти
$$\int x \operatorname{arctg} x dx$$
.

64. Найти
$$\int e^{3x} \sin 5x dx$$
.

65. Найти
$$\int \frac{x^3 + 2}{x^3 - 4x} dx$$
.

66. Найти
$$\int \frac{3x^2 + 2x - 1}{(x - 1)^2(x + 2)} dx$$
.

67. Найти
$$\int \frac{x}{(x-1)(x^2+x+1)} dx$$
.

68. Найти
$$\int \frac{dx}{3\cos x + 2}$$
.

69. Найти
$$\int \cos^5 x dx$$
.

70. Найти
$$\int \cos^2 2x \sin^3 2x dx$$
.

71. Найти
$$\int \cos^4 2x \sin^2 2x dx$$
.

72. Найти
$$\int tg^5 4x dx$$
.

73. Найти
$$\int ctg^6 5xdx$$
.

74. Найти
$$\int \frac{\sqrt{x}}{x^2 \sqrt{x-1}} dx$$
.

75. Найти
$$\int \frac{\sqrt{x^2-1}}{x} dx$$
.

76. Найти
$$\int \frac{\sqrt{x^2 + 5}}{x^2} dx$$
.

77. Найти
$$\int \sqrt{9-x^2} dx$$
.

78. С помощью определенного интеграла вычислить площадь фигуры, ограниченной линиями $y = 6 - x - 2x^2$, y = x + 2.

79. С помощью определенного интеграла вычислить площадь фигуры, ограниченной линиями $y = e^x$, y = 0, x = 1, x = 2.

80. С помощью определенного интеграла вычислить площадь фигуры, ограниченной линиями $y = \sin x, y = 0, x = \pi/4, x = \pi/2$.

81. С помощью определенного интеграла вычислить площадь фигуры, ограниченной линиями $y = \frac{3}{x}, x + y = 4.$

82. Найти площадь фигуры, ограниченной одной аркой циклоиды $x = 3(t - \sin t)$, $y = 3(1 - \cos t)$.

83. Найти площадь фигуры, ограниченной кардиоидой $r = 6(1 + \sin \varphi)$.

84. Найти длину кривой $y = x^{\frac{3}{2}}$ от точки O(0;0) до точки M(4;8).

- 85. Найти длину кардиоиды $r = 6(1 + \sin \varphi)$.
- 86. Найти длину одной арки циклоиды $x = 3(t \sin t)$, $y = 3(1 \cos t)$.
- 87. Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной

линиями
$$y = \frac{x^2}{2}$$
 и $2x + 2y - 3 = 0$.

РАЗДЕЛ 7. ОЦЕНОЧНЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЕ (ФОНД ОЦЕНОЧНЫХ СРЕДСТВ) ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

В процессе освоения дисциплины «Математический анализ» для оценки формирования общекультурных и профессиональных компетенций используются оценочные средства, представленные в таблице 7.1.

Таблица 7.1

7.1. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы в соотношении с оценочными средствами

Планируемые результаты, характеризующие этапы формирования компетенции	Содержание учебного материала	Примеры контрольных вопросов и заданий для оценки знаний, умений, владений	Методы \ средства контроля
	ость строить примеры основ		
математическом ан	ализе, пользоваться построс решения практически		оделей для
основных математических	Производная функции Исследование функций и построение графиков Определенный интеграл Функции нескольких переменных	Вычисление производной функции одного аргумента в точке, вычисление площади фигуры, длины дуги, объема тела вращения с помощью определенного интеграла, нахождение безусловного и условного экстремума функции нескольких переменных	Тесты (тестовые задания № 1- 4), зачёт (вопросы № 1-9)
экономической	Производная функции Исследование функций и построение графиков Определенный интеграл Функции нескольких переменных	Придание экономического смысла понятиям производная, определенный интеграл, безусловный и условный экстремум функции нескольких аргументов	Тесты (тестовые задания № 5-11), зачёт (вопросы № 10-27)

построения основных математических	Производная функции Исследование функций и построение графиков Определенный интеграл Функции нескольких переменных	Вычисление производной функции одного аргумента в точке, вычисление площади фигуры, длины дуги, объема тела вращения с помощью определенного интеграла, нахождение безусловного и условного экстремума функции нескольких переменных	Тесты (тестовые задания № 12-15), зачёт (вопросы № 28-31)
------------------------------------	--	--	---

7.2. Перечень вопросов для подготовки к промежуточной аттестации зачету

- 1. Числовая последовательность и ее предел.
- 2. Предел функции. Основные теоремы о пределах.
- 3. Первый замечательный предел.
- 4. Второй замечательный предел.
- 5. Непрерывность функции. Классификация точек разрыва.
- 6. Производная. Геометрический смысл производной.
- 7. Теорема о связи дифференцируемости и непрерывности функции в точке.
- 8. Производные основных элементарных функций.
- 9. Основные теоремы о производных.
- 10. Теоремы Ролля, Лагранжа, Коши. Формула Тейлора (без доказательства).
- 11. Правило Лопиталя.
- 12. Теорема о связи знака производной с монотонностью функции.
- 13. Экстремумы функции. Необходимое и достаточное условие экстремума.
- 14. Выпуклость и вогнутость функции. Теорема о связи знака второй производной с выпуклостью и вогнутостью. Точки перегиба.
- 15. Асимптоты функции. Нахождение вертикальных, наклонных и горизонтальных асимптот.
- 16. Частные производные функций нескольких переменных.
- 17. Касательная плоскость и нормаль к поверхности.
- 18. Градиент и производная по направлению.
- 19. Экстремум функции двух переменных.
- 20. Условный экстремум функции нескольких переменных. Метод множителей Лагранжа.
- 21. Первообразная функции. Неопределённый интеграл и его основные свойства.
- 22. Метод внесения под дифференциал и подстановка в неопределённом интеграле.
- 23. Интегрирование по частям в неопределённом интеграле.
- 24. Разложение правильных рациональных дробей на элементарные дроби.
- 25. Интегрирование элементарных дробей трех типов.
- 26. Определение определённого интеграла. Геометрический смысл определённого интеграла.
- 27. Основные свойства определённого интеграла.
- 28. Теорема об интеграле с переменным верхним пределом.
- 29. Формула Ньютона-Лейбница.

- 30. Вычисление длины дуги плоской кривой с помощью определённого интеграла.
- 31. Вычисление объёма тела вращения с помощью определённого интеграла.

7.3. Примерные тестовые задания для контроля (мониторинга) качества усвоения материала в т.ч. в рамках рубежного контроля знаний 2

1.	Вычи	слить пр	едел		$\lim_{\varepsilon \to 0} \frac{2 \cdot l\eta}{}$	$\frac{n(1+x)}{x}$			
	a.	2	b.	6	c.	3	d.	5	
2.	Найти	и точки р	азрыва	a	4-	_ x -	5		
	функі	ции			У	$=\frac{1}{x^2-x}$	$\alpha - 6$		_
	a.	2; 3	b.	-2; 3	c.	1;4	d.	2; -4	
3.	Найть	и значені	ие прои	таволно	й 1		1		2 в точке
	функі		ne npor	ізводіїо	,		$x \cdot x^3$		3 в точке 1.
	a.	10	b.	15	c.	5	d.	23	
4.	Найти	значен	ие прои	зводно	й	$u = \sin^2$	$\frac{3 \cdot x}{3 \cdot x}$	р тош	$v = v = \pi$
	функі	ции	_			y - sin	2	B IU-II	$xe x = \pi.$
	a.	1	b.	-1	c.	0	$\begin{array}{c c} \mathbf{d.} \\ -2 \cdot x^2 \end{array}$	2	
5.	_	целить на	аибольц	цее знач	чение	y =	$-2 \cdot x^2 +$	$+4 \cdot x +$	- 2
	функі		Τ _				T _		1
_	a.	0	b.	2	c.	4	d.	6	
6.		и значен		_		$y = -\frac{1}{3}$	$\frac{0}{-} + 5$		
		на касат	ельнои	к граф	ику	:	x	в точі	ke 1.
	функі		T -	1.0	1	1 =		20	1
_	a.	5	b.	10	c.	15	d.	20	
7.		и наибол:		наимен	ьшее			y = 3	$x-x^2$
		ние фун							
	на отр 3.	резке —2	$x \geq x \geq$						
	a.	3 (наи	больше	е значе	ние): -	20 (наи	меньш	ее знач	чение)
	b.	- :	_	е значе					
	c.			е значе					
	d.	,	_	е значе		,			,
8.	Найти	тангено				,			$x^{3} + 4$
	функі		5						$y = \frac{1}{x^2}$.
	a.	4	b.	1	c.	10	d.	5	
9.	Найти	абсцис	сы точе	к перег	иба гр	афика		3 /7.	13
	функі	ции						$y = \sqrt[3]{2}$	$1-x^3$.
	a.	1;0	b.	0;1	c.	2;-1	d.	1;-2	
10.	Сколь	ко асимі	птот им	геет	_	x^2	1		
	функі	ция)	$y = \frac{1}{x}$	<u> </u>		7
	a.	0	b.	1	c.	2	d.	∞	
11.	Найти	интерва	им зна	копосто	янств	а и нул	И	$v = \frac{2}{1}$	x-1
	функі	ции						y - (x)	$(-1)^2$
	a. y	у>0 при 2	$x \in (0; +$	∞);y<0	при х (∈ (-∞;0); нули	функі	ции
	(тсутств	уют						

 2 Рубежный контроль знаний проводится для обучающихся очной формы обучения и оценивается по шкале «зачет»\ «не зачтено»

у>0 при $x \in (1/2; +\infty); y<0$ при $x \in (-\infty; 1/2); x=1/2$ у>0 при $x \in (1; +\infty); y<0$ при $x \in (-\infty; 1); x=1$ y>0 при x ∈ (2; +∞); y<0 при x ∈ (-∞; 2); x=212. Найтиточки экстремума функции b. 0;3 3:5 -3;5 C. 13. Найтиинтервалы возрастания и убывания функции Функция убывает $(-\infty; 1) \cup (1; \infty)$ Функция убывает (0;∞), функция возрастает (-∞;0)Функция убывает(- ∞ ;0), функция возрастает (0; ∞) Функция возрастает ($-\infty$; 1) \cup (1; ∞) 14. Найтиабсциссы точек перегиба функции -1;0 b. 0;1-1;1d. -1;0;1a. c. 15. Найти интервалы выпуклости и вогнутости функции Выпуклая на $(0;\infty)$; вогнутая на $(-\infty;0)$ Выпуклая на $(-\infty;0)$; вогнутая на $(0;\infty)$ Выпуклая на $(-\infty; -1) \cup (1; \infty)$; вогнутая на (-1; 1)Выпуклая на (-1; 1); вогнутая на $(-\infty; -1) \cup (1; \infty)$

7.4. Описание показателей и критериев оценивания сформированности компетенций на различных этапах их формирования; шкалы и процедуры оценивания

7.4.1. Вопросов и заданий для текущей и промежуточной аттестации

При оценке знаний учитывается уровень сформированности компетенций:

- 1. Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
 - 2. Уровень знания фактического материала в объеме программы.
 - 3. Логика, структура и грамотность изложения вопроса.
 - 4. Умение связать теорию с практикой.
 - 5. Умение делать обобщения, выводы.

Таблица 7.4.1

Шкала оценивания на зачете, рубежном контроле

Оценка	Критерии выставления оценки
Зачтено	Студент должен:
	- продемонстрировать общее знание изучаемого материала;
	- показать общее владение понятийным аппаратом дисциплины;
	- уметь строить ответ в соответствии со структурой излагаемого
	вопроса;
	- знать основную рекомендуемую программой учебную
	литературу.
Не зачтено	Студент демонстрирует:
	- незнание значительной части программного материала;
	- не владение понятийным аппаратом дисциплины;
	- существенные ошибки при изложении учебного материала;
	- неумение строить ответ в соответствии со структурой

излагаемого вопроса;
- неумение делать выводы по излагаемому материалу.

7.4.2. Письменной работы (эссе)

При оценке учитывается:

- 1. Правильность оформления.
- 2. Уровень сформированности компетенций.
- 3. Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
- 4. Уровень знания фактического материала в объеме программы.
- 5. Логика, структура и грамотность изложения письменной работы.
- 6. Полнота изложения материала (раскрытие всех вопросов)
- 7. Использование необходимых источников.
- 8. Умение связать теорию с практикой.
- 9. Умение делать обобщения, выводы.

Таблица 7.4.2.1

Таблица 7.4.3

Шкала оценивания эссе

Оценка	Критерии выставления оценки
Зачтено	Студент должен: - продемонстрировать общее знание изучаемого материала; - показать общее владение понятийным аппаратом дисциплины; - уметь строить ответ в соответствии со структурой излагаемого вопроса; - знать основную рекомендуемую программой учебную
Не зачтено	литературу. Студент демонстрирует: - незнание значительной части программного материала; - не владение понятийным аппаратом дисциплины; - существенные ошибки при изложении учебного материала; - неумение строить ответ в соответствии со структурой излагаемого вопроса; - неумение делать выводы по излагаемому материалу.

7.4.3. Тестирование

Критерии оценивания тестирования

Оценка	Шкала
Отлично	Количество верных ответов в интервале: 85-100%
Хорошо	Количество верных ответов в интервале: 71-84%
Удовлетворительно	Количество верных ответов в интервале: 65-70%
Неудовлетворительно	Количество верных ответов в интервале: 0-64%
Зачтено	Количество верных ответов в интервале: 65-100%
Не зачтено	Количество верных ответов в интервале: 0-64%

7.5 МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ.

Качество знаний характеризуется способностью обучающегося точно, структурированно и уместно воспроизводить информацию, полученную в процессе освоения

дисциплины, в том виде, в котором она была изложена в учебном издании или преподавателем.

Умения, как правило, формируются на занятиях семинарского типа. Задания, направленные на оценку умений, в значительной степени требуют от обучающегося проявления стереотипности мышления, т.е. способности выполнить работу по образцам, с которыми он работал в процессе обучения. Преподаватель же оценивает своевременность и правильность выполнения задания.

Навыки - это умения, развитые и закрепленные осознанным самостоятельным трудом. Навыки формируются при самостоятельном выполнении студентом практико моделирующих решение производственных. заданий, социокультурных и правовых задач в соответствующей области профессиональной деятельности, как правило, при выполнении домашних заданий, курсовых проектов (работ), научно-исследовательских работ, прохождении практик, при работе индивидуально или в составе группы и т.д. При этом студент поставлен в условия, когда он вынужден самостоятельно (творчески) искать пути и средства для разрешения поставленных задач, самостоятельно планировать свою работу и анализировать ее результаты, принимать определенные решения в рамках своих полномочий, самостоятельно выбирать аргументацию и нести ответственность за проделанную работу, т.е. проявить владение навыками. с преподавателем осуществляется периодически по Взаимодействие завершению определенных этапов работы и проходит в виде консультаций. При оценке владения навыками преподавателем оценивается не только правильность решения выполненного задания, но и способность (готовность) обучающегося решать подобные практикоориентированные задания самостоятельно (в перспективе за стенами вуза) и, главным образом, способность обучающегося обосновывать и аргументировать свои решения и предложения.

Устный опрос - это процедура, организованная как специальная беседа преподавателя с группой обучающихся (фронтальный опрос) или с отдельными студентами (индивидуальный опрос) с целью оценки сформированности у них основных понятий и усвоения учебного материала.

Тесты являются простейшей форма контроля, направленная на проверку владения терминологическим аппаратом, современными информационными технологиями и конкретными знаниями в области фундаментальных и прикладных дисциплин. Тест может предоставлять возможность выбора из перечня ответов; один или несколько правильных ответов; частота тестирования определяется преподавателем.

Практические занятия - особая форма сочетания теории и практики. Их назначение — углубление проработки теоретического материала предмета путем регулярной и планомерной самостоятельной работы обучающимся на протяжении всего курса. Процесс подготовки к практическим занятиям включает изучение обязательной и дополнительной литературы по рассматриваемому вопросу. Непосредственное проведение практического занятия предполагает:

индивидуальные выступления обучающихся с сообщениями по какому-либо вопросу изучаемой темы, фронтальное обсуждение рассматриваемой проблемы, обобщения и выводы, решение задач и упражнений по образцу.

РАЗДЕЛ 8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

8.1. Методические рекомендации по написанию эссе

Эссе (от французского essai – опыт, набросок) – жанр научно-публицистической литературы, отражающий подчеркнуто-индивидуальную позицию автора по конкретной проблеме.

Главными особенностями, которые характеризуют эссе, являются следующие положения:

- собственная позиция обязательно должна быть аргументирована и подкреплена законами, авторитетными точками зрениями и базироваться на фундаментальной науке. Небольшой объем (4–6 страниц), с оформленным списком литературы и сносками на ее использование.
- стиль изложения научно-исследовательский, требующий четкой, последовательной и логичной системы доказательств; может отличаться образностью, оригинальностью, афористичностью, свободным лексическим составом языка.
- исследование ограничивается четкой, лаконичной проблемой с выявлением противоречий и разрешением этих противоречий в данной работе.

8.2. Методические рекомендации по использованию кейсов

Кейс-метод (Casestudy) – метод анализа реальной жизненной ситуации, описание которой одновременно отражает не только какую-либо практическую проблему, но и актуализирует определенный комплекс знаний, который необходимо усвоить при разрешении данной проблемы. При этом сама проблема не имеет однозначных решений.

Кейс как метод оценки компетенций должен удовлетворять следующим требованиям:

- соответствовать четко поставленной цели создания;
- иметь междисциплинарный характер;
- иметь достаточный объем первичных и статистических данных;
- иметь соответствующий уровень сложности, иллюстрировать типичные ситуации, иметь актуальную проблему, позволяющую применить разнообразные методы анализа при поиске решения, иметь несколько решений.

Кейс-метод оказывает содействие развитию умения решать проблемы с учетом конкретных условий и при наличии фактической информации. Он развивает такие квалификационные характеристики, как способность к проведению анализа и диагностики проблем, умение четко формулировать и высказывать свою позицию, умение общаться, дискутировать, воспринимать и оценивать информацию, которая поступает в вербальной и невербальной форме.

8.3. Требования к компетентностно-ориентированным заданиям для демонстрации выполнения профессиональных задач

Компетентностно-ориентированное задание — это всегда практическое задание, выполнение которого нацелено на демонстрирование доказательств наличия у обучающихся общекультурных, общепрофессиональных и профессиональных компетенций, знаний, умений, необходимых для будущей профессиональной деятельности.

Компетентностно-ориентированные задания бывают разных видов:

- направленные на подготовку конкретного практико-ориентированного продукта (разработка структуры государства, разработка системы ценностей общества и др.);
- аналитического и диагностического характера, направленные на анализ различных аспектов и проблем управленческой деятельности (анализ внешней политической обстановки, анализ внутренней политической обстановки в различные периоды развития русского государства и т. п.);
- связанные с выполнением основных профессиональных функций (выполнение конкретных действий в рамках вида профессиональной деятельности, например, формулирование миссии и целей государства на международной арене в различные исторические периоды и т. п.).

РАЗДЕЛ 9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература ³

- 1. Высшая математика для экономистов [Электронный ресурс] : учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер [и др.]. 3-е изд. Электрон. текстовые данные. М. : ЮНИТИ-ДАНА, 2017. 481 с. − ЭБС «IPRbooks». 978-5-238-00991-9. Режим доступа: http://www.iprbookshop.ru/74953.html
- **2.** Растопчина О.М. Высшая математика [Электронный ресурс] : учебное пособие / О.М. Растопчина. Электрон. текстовые данные. М. : Московский педагогический государственный университет, 2018. 150 с. ЭБС «IPRbooks». 978-5-4263-0594-6. Режим доступа: http://www.iprbookshop.ru/79053.html
- **3.** Математика [Электронный ресурс] : учебное пособие / О.В. Бондрова [и др.]. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2018. 194 с.— ЭБС «IPRbooks». 978-5-4486-0107-1. Режим доступа: http://www.iprbookshop.ru/70267.html

Дополнительная литература⁴

- **1.** Тетруашвили Е.В. Математика [Электронный ресурс] : практикум / Е.В. Тетруашвили, В.В. Ершов. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2018. 159 с. ЭБС «IPRbooks». 978-5-4486-0220-7. Режим доступа: http://www.iprbookshop.ru/71567.html
- **2.** Ахметгалиева В.Р. Математика. Линейная алгебра [Электронный ресурс] : учебное пособие / В.Р. Ахметгалиева, Л.Р. Галяутдинова, М.И. Галяутдинов. Электрон. текстовые данные. М. : Российский государственный университет правосудия, 2017. 60 с. ЭБС «IPRbooks». 978-5-93916-552-5. Режим доступа: http://www.iprbookshop.ru/65863.html
- **3.** Горелов В.И. Математика [Электронный ресурс] : сборник задач и упражнений / В.И. Горелов, О.Л. Карелова, Т.Н. Ледащева. Электрон. текстовые данные. М. : Российская международная академия туризма, Университетская книга, 2016. 112 с. ЭБС «IPRbooks». 978-5-98699-189-4. Режим доступа: http://www.iprbookshop.ru/70538.html
- **4.** Никонова Г.А. Математика. Теория и практика [Электронный ресурс] : учебное пособие / Г.А. Никонова, Н.В. Никонова. Электрон. текстовые данные. Казань: Казанский национальный исследовательский технологический университет, 2016. 234 с. ЭБС «IPRbooks». 978-5-7882-1999-8. Режим доступа: http://www.iprbookshop.ru/79318.html

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Интернет-ресурсы, современные профессиональные базы данных, информационно-справочные и поисковые системы

Интернет-ресурсы,

Организация безопасности и сотрудничества в Европе: http://www.osce.org/

Организация Объединенных наций: http://www.un.org/

Организация по Безопасности и Сотрудничеству в Европе: www.osce.org

Совет Европы: http://www.coe.int

ЮНЕСКО: http://www.unesco.org

современные профессиональные базы данных,

Всемирная организация здравоохранения: http://www.who.ch/

Всемирная торговая организация: www.wto.org Европейский парламент: http://www.europarl.eu.int

Европейский Союз: http://.europa.eu.int

Международная организация труда: http://www.ilo.org

⁴ Из ЭБС института

~ -

³ Из ЭБС института

информационно-справочные и поисковые системы

ЭБС «IPRbooks» http://www.iprbookshop.ru

Справочная правовая система «КонсультантПлюс»: http://www.con-sultant.ru

Комплект лицензионного программного обеспечения

2014-2015 учебный год:

1.Microsoft Open Value Subscription для решений Education Solutions № V723251. MDE (Windows 7, Microsoft Office 2010/2013 и Office Web Apps. ESET NOD32 Antivirus Business Edition) договор № ДЛ1807/01 от 18.07.2014г. Приложение №1 от 18 июля 2014

Справочная Правовая Система КонсультантПлюс – договор об информационной поддержке от 26.12.2014 (срок действия – бессрочный)

2015-2016 учебный год

Microsoft Open Value Subscription для решений Education Solutions № V723251. MDE (Windows 7, Microsoft Office 2010/2013 и Office Web Apps. ESET NOD32 Antivirus Business Edition) договор № ДЛ1807/01 от 18.07.2014г. Приложение №2 от 03 июля 2015 - 57 лицензий (срок действия – 1 год.)

Справочная Правовая Система КонсультантПлюс – договор об информационной поддержке от 26.12.2014 (срок действия – бессрочный)

2016-2017 учебный год

Microsoft Open Value Subscription для решений Education Solutions № V723251. MDE (Windows 7, Microsoft Office 2010/2013 и Office Web Apps. ESET NOD32 Antivirus Business Edition) договор № ДЛ1807/01 от 18.07.2014г. Приложение №3 от 04 августа 2016 - 57 лицензий (срок действия - 1 год)

Справочная Правовая Система КонсультантПлюс – договор об информационной поддержке от 26.12.2014 (срок действия – бессрочный)

2017-2018 учебный год

Microsoft Open Value Subscription для решений Education Solutions № V723251. MDE (Windows 7, Microsoft Office 2010/2013 и Office Web Apps. ESET NOD32 Antivirus Business Edition) договор № ДЛ1807/01 от 18.07.2014г. Приложение №6 от 08 августа 2017 -57 лицензий (срок действия - 1 год)

Справочная Правовая Система КонсультантПлюс – договор об информационной поддержке от 26.12.2014 (срок действия – бессрочный)

2018-2019 учебный год

Microsoft Open Value Subscription для решений Education Solutions № V723251. MDE (Windows 7, Microsoft Office 2010/2013 и Office Web Apps. ESET NOD32 Antivirus Business Edition) договор № ДЛ1807/01 от 18.07.2014г. Приложение №7 от 24 июля 2018 -57 лицензий (срок действия - 1 год).

Справочная Правовая Система КонсультантПлюс – договор об информационной поддержке от 26.12.2014 (срок действия – бессрочный)

РАЗДЕЛ 10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебная аудитории для проведения занятий	Комплект специальной учебной мебели.
лекционного типа, занятий семинарского типа,	Технические средства обучения,
групповых и индивидуальных консультаций,	служащие для предоставления учебной
текущего контроля и промежуточной аттестации	информации большой аудитории: доска
	аудиторная маркерная, мультимедийное
	оборудование: компьютер,
	видеопроектор
Помещение для самостоятельной работы	компьютерная техника с возможностью
	подключения к сети "Интернет" и
	обеспечением доступа в электронную
	информационно-образовательную среду

организации
принтер
Комплект специальной учебной мебели