Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гриб Владислав Валерьевич

Должность: Ректор

Дата подписания: 09.07.2025 20:59:29

Уникальный программный ключ:

(ИМПЭ им. А.С. Грибоедова)

ИНСТИТУТ МЕЖДУНАРОДНОЙ ЭКОНОМИКИ, ЛИДЕРСТВА И МЕНЕДЖМЕНТА

УТВЕРЖДАЮ

Директор института международной экономики, лидерства и менеджмента

______ А. А. Панарин «20» июня 2025г.

Рабочая программа дисциплины ЦИФРОВЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

Направление подготовки 24.03.02 Системы управления движением и навигация (уровень бакалавриат)

Направленность (профиль): «Цифровые системы управления и навигация беспилотных аппаратов»

Форма обучения: очная

Рабочая программа дисциплины «Цифровые системы управления». Направление подготовки 24.03.02 Системы управления движением и навигация, профиль: «Цифровые системы управления и навигация беспилотных аппаратов» / Т. В. Новикова — М.: ИМПЭ им. А.С. Грибоедова. — 19с.

Рабочая программа дисциплины высшего образования составлена на основании федерального государственного образовательного стандарта высшего образования — бакалавриат по направлению подготовки 24.03.02 Системы управления движением и навигация, утвержденного приказом Министерства образования и науки Российской Федерации от 5 февраля 2018 г. № 72 (с изменениями от 26 ноября 2020 г., 8 февраля 2021г.); Профессионального стандарта «Специалист по научно-исследовательским и опытно-конструкторским разработкам», утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 04.03.2014 № 121н (зарегистрирован Министерством юстиции Российской Федерации 21 марта 2014 года, регистрационный № 31692)

Разработчики:	Т. В. Новикова, к.э. н., доцент
Ответственный рецензент:	О. А. Левичев, кандидат военных наук, доцент, доцент кафедры Дистанционного зондирования и цифровой картографии, ФГБОУ ВО «Государственный университет по землеустройству»
Ответственный рецензент:	Соколов А.М., кандидат технических наук, преподаватель Военный академии Ракетных войск стратегического назначения
	ины рассмотрена и одобрена на заседании кафедры цифровой цеятельности 20.06.2025г., протокол №9
Заведующий кафедрой	/А. А. Панарин, д. э. н., профессор (подпись)
Согласовано от библиотеки _	/ О. Е. Степкина (полпись)

Раздел 1. Цели и задачи освоения дисциплины

Целью освоения дисциплины «Цифровые системы управления» является формирование у студентов теоретических знаний и практических навыков по построению и анализу цифровых систем управления; способности разрабатывать дискретные математические модели элементов и подсистем управления летательных аппаратов; умения применять современные методы анализа и синтеза цифровых регуляторов для решения задач стабилизации, навигации и управления движением.

К основные задачи освоения дисциплины: изучить принципы функционирования импульсных и цифровых систем; освоить методы описания дискретных сигналов и систем; научиться строить и преобразовывать математические модели цифровых звеньев и систем; уметь разрабатывать математические модели типовых узлов цифровых систем управления; применять структурные преобразования для упрощения и анализа моделей; использовать программные средства для моделирования цифровых систем управления.

Раздел 2. Планирование результатов обучения по дисциплине, соотнесенные с

планируемыми результатами освоения образовательной программы

планируемыми результатами освоения образовательной программы				
Код	Фонециянания	Индикаторы достижения компетенции		
компете	Формулировка	(для планирования результатов обучения по элементам образовательной программы и		
нции	компетенции	соответствующих оценочных средств)		
ПК-2	Способен разрабатывать	ПК-2.1 Знает методы построения математических		
	математические модели	моделей; знает математические модели		
	узлов, модулей и приборов в	метрологического обеспечения узлов, модулей и		
	составе систем управления	приборов в составе систем управления		
	движением и навигации	движением и навигации; принципы построения		
		систем ориентации и навигации; методы анализа		
		и синтеза параметров систем управления		
		движением и навигации		
		ПК-2.2 Умеет проводить расчет параметров		
		математических моделей; разрабатывать модели		
		погрешностей навигационных систем;		
		моделировать алгоритмы инерциальных систем		
		ориентации и навигации; проводить расчет		
		параметров систем управления движением и		
		навигации		
		ПК-2.3 Владеет навыками составления		
		математических моделей и структурных схем;		
		навыками проектирования систем управления		
		движением и навигации		

Раздел 3. Место дисциплины в структуре образовательной программы

Дисциплина «Цифровые системы управления» изучается в 7 семестре, относится к части, формируемой участниками образовательных отношений Блока Б.1 «Дисциплины (модули)» образовательной программы по направлению подготовки 24.03.02 Системы управления движением и навигация, профиль: «Цифровые системы управления и навигация беспилотных аппаратов».

Раздел 4. Объем (трудоемкость) дисциплины (общая, по видам учебной работы, видам промежуточной аттестации)

Трудоемкость дисциплины и виды учебной нагрузки

на очной форме обучения

3.e.	Итого	Лекции	Практиче ские занятия	Курсовое проектир ование	Самостояте льная работа	Текущий контроль	Контроль, промежуто чная аттестация
				7 семестр			
3	108	16	16		72		4 Зачет

Тематический план дисциплины

Очная форма обучения

	Uч	ная форма с	оучения			
Разделы / Темы	Ле	Практиче	Самостоя	Теку	Контроль,	Всего
	кц	ские	тельная	щий	промежуто	часов
	ИИ	занятия	работа	конт	чная	
				роль	аттестация	
		7 семестр				
Тема 1. Основы дискретного						
преобразования Лапласа и Z-	6	6	8			20
преобразования						
Тема 2. Передаточная функция	6	6	8			20
Тема 3. Правила структурных						
преобразований в импульсных	5	5	7			17
системах						
Тема 4. Методы построения						
частотных характеристик	5	5	7			17
импульсных систем						
Тема 5. Анализ устойчивости с	5	5	7			17
помощью критерия Найквиста	3	3	/			1 /
Тема 6. Свободные и						
вынужденные процессы в	5	5	7			17
импульсных системах						
Экзамен					36	36
итого за 7 семестр	32	32	44		36	144

Структура и содержание дисциплины

Наименование разделов и тем	Содержание темы
Тема 1. Основы дискретного преобразования Лапласа и Z-преобразования	Понятие дискретных сигналов. Дискретное преобразование Лапласа: определение, свойства, применение. Переход от преобразования Лапласа к Z-преобразованию. Основные свойства Z-преобразования. Обратное Z-преобразование и его методы вычисления. Применение Z-преобразования в анализе линейных импульсных систем.

Тема 2. Передаточная функция Тема 3. Правила структурных преобразований в импульсных	Понятие передаточной функции в цифровых системах управления. Получение передаточной функции на основе разностного уравнения. Передаточная функция импульсного элемента. Связь между передаточной функцией и Z-изображением входного и выходного сигналов. Передаточные функции последовательно и параллельно соединенных звеньев. Импульсная переходная функция и её связь с передаточной функцией. Эквивалентные преобразования структурных схем импульсных систем. Перестановка импульсных
системах	элементов относительно непрерывных звеньев. Перенос сумматоров и точек съема сигнала через импульсный элемент. Замена многократной импульсной модуляции эквивалентной однократной. Структурные преобразования замкнутых импульсных систем. Методы упрощения сложных структурных схем.
Тема 4. Методы построения частотных характеристик импульсных систем	Частотные характеристики дискретных систем: АЧХ, ФЧХ, АФЧХ. Методы построения частотных характеристик на основе передаточной функции. Преобразование Z-передаточной функции к частотной области. Построение логарифмических частотных характеристик. Особенности частотных характеристик импульсных систем. Анализ влияния периода квантования на форму частотных характеристик.
Тема 5. Анализ устойчивости с помощью критерия Найквиста	Устойчивость импульсных систем: понятие и условия. Алгебраические и частотные критерии устойчивости. Критерий Найквиста для импульсных систем: формулировка и применение. Построение годографа разомкнутой системы в комплексной плоскости. Определение запасов устойчивости по амплитуде и фазе. Сравнение устойчивости аналоговых и цифровых систем управления.
Тема 6. Свободные и вынужденные процессы в импульсных системах	Временные характеристики импульсных систем: переходная и весовая функции. Методы анализа свободных процессов: корневой метод, решение разностных уравнений. Вынужденные процессы при типовых воздействиях. Оценка качества переходных процессов. Методы численного моделирования процессов в импульсных системах. Влияние параметров системы и периода квантования на динамику процессов.

Занятия семинарского типа (Практические занятия)

Общие рекомендации по подготовке к семинарским занятиям. При подготовке к работе во время проведения занятий семинарского типа следует обратить внимание на следующие моменты: на процесс предварительной подготовки, на работу во время занятия, обработку полученных результатов, исправление полученных замечаний. Предварительная подготовка к учебному занятию семинарского типа заключается в изучении теоретического материала в отведенное для самостоятельной работы время, ознакомление с инструктивными материалами с целью осознания задач занятия.

Работа во время проведения занятия семинарского типа включает несколько моментов: а) консультирование обучающихся преподавателями с целью предоставления исчерпывающей информации, необходимой для самостоятельного выполнения предложенных преподавателем задач, б) самостоятельное выполнение заданий согласно обозначенной учебной программой тематики.

Тема 1. Основы дискретного преобразования Лапласа и Z-преобразования

- 1. Вычисление Z-изображений типовых последовательностей.
- 2. Нахождение обратного Z-преобразования методом разложения на простые дроби.
- 3. Построение графиков оригинала и его Z-изображения для заданной дискретной функции.

Тема 2. Передаточная функция

- 1. Получение передаточной функции по заданному разностному уравнению.
- 2. Расчёт реакции системы на входное воздействие с использованием передаточной функции.
- 3. Построение структурной схемы системы по её передаточной функции.

Тема 3. Правила структурных преобразований в импульсных системах

- 1. Упрощение структурной схемы с параллельным и последовательным соединением звеньев.
- 2. Перенос сумматора и точки съема сигнала относительно импульсного элемента.
- 3. Преобразование многократно модулированной системы в однократно модулированную эквивалентную систему.

Тема 4. Методы построения частотных характеристик импульсных систем

- 1. Построение АЧХ и ФЧХ системы по её Z-передаточной функции.
- 2. Построение логарифмических частотных характеристик (ЛАЧХ и ЛФЧХ) цифровой системы.
- 3. Сравнение частотных характеристик аналоговой и цифровой версий одной и той же системы.

Тема 5. Анализ устойчивости с помощью критерия Найквиста

- 1. Построение годографа Найквиста для заданной разомкнутой импульсной системы.
- 2. Определение устойчивости замкнутой системы по виду годографа.
- 3. Расчёт запасов устойчивости по модулю и фазе для цифровой системы.

Тема 6. Анализ устойчивости с помощью критерия Найквиста

- 1. Расчёт свободного процесса в системе второго порядка при заданных начальных условиях.
- 2. Построение переходной характеристики системы по её передаточной функции.
- 3. Исследование вынужденного процесса при подаче ступенчатого и гармонического воздействия.

Раздел 5. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине

Наряду с чтением лекций и проведением семинарских занятий неотъемлемым элементом учебного процесса является самостоятельная работа. При самостоятельной работе достигается конкретное усвоение учебного материала, развиваются теоретические способности, столь важные для успешной подготовки и защиты выпускной работы бакалавра. Формы самостоятельной работы, обучаемых могут быть разнообразными. Самостоятельная работа включает: изучение литературы, веб-ресурсов, оценку, обсуждение и рецензирование публикуемых статей; ответы на контрольные вопросы; решение задач; самотестирование. Выполнение всех видов самостоятельной работы увязывается с изучением конкретных тем.

Самостоятельная работа

Наименование разделов/тем	Виды занятий для самостоятельной работы
Тема 1. Основы дискретного	- усвоение изучаемого материала по
преобразования Лапласа и Z-	рекомендуемой учебной, учебно- методической и
преобразования	научной литературе и/или по конспекту лекции;
Тема 2. Передаточная функция	- выполнение устных упражнений;
Тема 3. Правила структурных	- выполнение письменных упражнений и
преобразований в импульсных системах	практических работ;
Тема 4. Методы построения частотных	- выполнение творческих работ;
характеристик импульсных систем	- участие в проведении научных экспериментов,
Тема 5. Анализ устойчивости с	исследований
помощью критерия Найквиста	
Тема 6. Свободные и вынужденные	
процессы в импульсных системах	

5.1. Примерная тематика эссе¹

- 1. Роль цифровых систем управления в современных летательных аппаратах.
- 2. Историческое развитие цифровых систем управления: от аналоговых к цифровым технологиям.
- 3. Преимущества и недостатки дискретного управления по сравнению с непрерывным.
- 4. Применение Z-преобразования в анализе устойчивости цифровых систем.
- 5. Сравнительный анализ преобразования Лапласа и Z-преобразования.
- 6. Передаточная функция как основной инструмент анализа цифровых систем.
- 7. Понятие импульсной переходной функции и её значение в моделировании систем.
- 8. Влияние временной задержки на динамику цифровой системы управления.
- 9. Особенности построения структурных схем в импульсных системах.
- 10. Эквивалентные преобразования в цифровых системах: методы и ограничения.
- 11. Сравнение последовательного, параллельного и встречно-параллельного соединений звеньев в импульсных системах.
- 12. Частотные характеристики импульсных систем: особенности и интерпретация.
- 13. Построение АФЧХ цифровых систем и её роль в анализе устойчивости.
- 14. Критерий Найквиста для аналоговых и цифровых систем: общее и различие.
- 15. Анализ устойчивости замкнутой импульсной системы по годографу Найквиста.
- 16. Запасы устойчивости по модулю и фазе в цифровых системах управления.
- 17. Современные подходы к обеспечению устойчивости цифровых автопилотов.
- 18. Методы исследования свободных процессов в импульсных системах.
- 19. Вынужденное движение в цифровых системах: реакция на типовые воздействия.
- 20. Оценка качества переходных процессов в системах управления летательными аппаратами.
- 21. Влияние параметров цифрового регулятора на качество управления.
- 22. Использование разностных уравнений для моделирования поведения систем.
- 23. Корневой метод анализа устойчивости и его применение в цифровом управлении.
- 24. Связь между корневыми показателями и временными характеристиками системы.
- 25. Методы численного моделирования цифровых систем управления.
- 26. Проблемы реализации цифровых регуляторов в реальном времени.
- 27. Учет запаздывания в цифровых системах управления движением.
- 28. Сравнение аналоговых и цифровых регуляторов в задачах навигации и стабилизации.
- 29. Применение цифровых систем управления в БПЛА: особенности и вызовы.
- 30. Цифровое управление в условиях ограниченных вычислительных ресурсов.
- 31. Влияние шума и помех на работу цифровых систем управления.

 1 Перечень тем не является исчерпывающим. Обучающийся может выбрать иную тему по согласованию с преподавателем.

- 32. Использование адаптивных алгоритмов в цифровых системах управления.
- 33. Роль программного обеспечения при проектировании цифровых систем.
- 34. Образовательные аспекты изучения цифровых систем управления.
- 35. Перспективы развития цифровых систем управления в авиационной и космической технике.
- 36. Искусственный интеллект в цифровых системах управления возможности и ограничения.
- 37. Экологические и экономические преимущества цифровых систем управления.

5.2. Примерные задания для самостоятельной работы

Наименование разделов/тем	Тип задания
Тема 1. Основы дискретного	1. Найти Z-изображение для функции $f(k)=a^k \cdot u(k)$, где
преобразования Лапласа и Z-	u(k) — единичная ступенчатая функция.
преобразования	2. Применить дискретное преобразование Лапласа к
	последовательности отсчетов сигнала.
Тема 2. Передаточная функция	1. Получить передаточную функцию системы,
	описываемой разностным уравнением:
	y(k+2) + 0.5y(k+1) + 0.2y(k) = u(k)
	2. Определить передаточную функцию замкнутой
	цифровой системы при наличии обратной связи.
Тема 3. Правила структурных	1. Упростить структурную схему системы с
преобразований в импульсных	несколькими параллельными и последовательными
системах	звеньями.
	2. Выполнить перенос сумматора через импульсный
	элемент и проверить эквивалентность.
Тема 4. Методы построения	1. Построить АЧХ и ФЧХ системы по её Z-
частотных характеристик	передаточной функции.
импульсных систем	2. Построить логарифмические частотные
	характеристики (ЛАЧХ и ЛФЧХ) цифровой системы.
Тема 5. Анализ устойчивости с	1. Исследовать влияние изменения параметров
помощью критерия Найквиста	системы на устойчивость.
	2. Сравнить результаты анализа устойчивости по
	критериям Найквиста и Гурвица.
Тема 6. Свободные и вынужденные	1. Найти решение однородного разностного уравнения
процессы в импульсных системах	второго порядка.
	2. Рассчитать переходную функцию системы по её
	передаточной функции.

Раздел 6. Оценочные и методические материалы по образовательной программе (фонд оценочных средств) для проведения текущего контроля успеваемости и промежуточной аттестации

6.1. Форма промежуточной аттестации обучающегося по учебной дисциплине

В процессе освоения учебной дисциплины для оценивания сформированности требуемых компетенций используются оценочные материалы (фонды оценочных средств), представленные в таблице

Планируемые результаты, характеризующие этапы формирования компетенции	Содержание учебного материала	Примеры контрольных вопросов и заданий для оценки знаний, умений, владений		
ПК-2 Способен разрабатывать математические модели узлов, модулей и приборов в составе систем управления движением и навигации				

ПК-2.1.	П. 6.2 настоящей рабочей программы дисциплины	П. 6.3 настоящей рабочей программы дисциплины
ПК-2.2.	П. 6.2 настоящей рабочей программы дисциплины	П. 6.3 настоящей рабочей программы дисциплины
ПК-2.3	П. 6.2 настоящей рабочей программы дисциплины	П. 6.3 настоящей рабочей программы дисциплины

6.2. Типовые вопросы и задания

Перечень вопросов для подготовки к промежуточной аттестации (к экзамену)

- 1. Определение дискретного сигнала. Виды дискретных сигналов.
- 2. Дискретное преобразование Лапласа: определение, свойства, применение.
- 3. Z-преобразование: основные определения и связь с преобразованием Лапласа.
- 4. Прямое и обратное Z-преобразование. Методы нахождения обратного Z-преобразования.
- 5. Свойства Z-преобразования.
- 6. Разностные уравнения как математическая модель цифровых систем.
- 7. Решение разностных уравнений с использованием Z-преобразования.
- 8. Передаточная функция цифровой системы: определение и методы получения.
- 9. Связь передаточной функции с разностным уравнением.
- 10. Импульсная переходная функция в цифровых системах.
- 11. Понятие импульсного элемента. Его роль в структуре цифровой системы.
- 12. Типовые соединения звеньев в цифровых системах и их передаточные функции.
- 13. Правила эквивалентных преобразований структурных схем импульсных систем.
- 14. Перенос сумматоров и точек съема через импульсный элемент.
- 15. Замена многократной импульсной модуляции однократной.
- 16. Частотные характеристики импульсных систем: АЧХ, ФЧХ, АФЧХ.
- 17. Построение частотных характеристик цифровых систем по передаточной функции.
- 18. Особенности логарифмических частотных характеристик импульсных систем.
- 19. Влияние периода квантования на вид частотных характеристик.
- 20. Устойчивость импульсных систем: понятие и условия устойчивости.
- 21. Алгебраические критерии устойчивости: критерий Шур-Кона.
- 22. Частотные критерии устойчивости: критерий Найквиста для импульсных систем.
- 23. Анализ устойчивости замкнутой системы по годографу Найквиста.
- 24. Запасы устойчивости по модулю и фазе в цифровых системах.
- 25. Свободные процессы в импульсных системах: методы анализа.
- 26. Корневой метод анализа устойчивости и качества переходных процессов.
- 27. Вынужденные процессы в импульсных системах при типовых воздействиях.
- 28. Переходная функция цифровой системы и её связь с передаточной функцией.
- 29. Оценка качества переходных процессов: время регулирования, перерегулирование, установившаяся ошибка.
- 30. Влияние параметров системы и периода квантования на качество управления.
- 31. Цифровая реализация классических законов управления.
- 32. Методы синтеза цифровых регуляторов.
- 33. Дискретные модели объектов управления: получение разностных уравнений.
- 34. Моделирование цифровых систем управления в среде MATLAB/Simulink.
- 35. Чувствительность цифровых систем к изменению параметров.
- 36. Влияние задержек в цепи управления на поведение системы.
- 37. Особенности проектирования цифровых систем управления в задачах навигации и стабилизации.
- 38. Современные тенденции развития цифровых систем управления.
- 39. Применение цифровых систем управления в летательных аппаратах.

40. Эффективность использования цифрового управления по сравнению с аналоговым.

6.3. Примерные тестовые задания

Полный банк тестовых заданий для проведения компьютерного тестирование находятся в электронной информационной образовательной среде и включает более 60 заданий, из которых в случайном порядке формируется тест, состоящий из 20 заданий.

в случайном порядке	ом порядке формируется тест, состоящий из 20 заданий.			
Компетенции	Типовые вопросы и задания			
ПК-2	1. Какое преобразование используется для анализа дискретных систем			
	во временной области?			
	А) Преобразование Фурье			
	Б) Дискретное преобразование Лапласа			
	В) Z-преобразование			
	Г) Интегральное преобразование			
	2. Какой сигнал представляет собой б[k]?			
	А) Единичный скачок			
	Б) Импульсная функция (дельта-функция)			
	В) Гармонический сигнал			
	Г) Периодическая последовательность			
	3. Какой метод не относится к нахождению обратного Z-			
	преобразования?			
	А) Метод разложения на простые дроби			
	Б) Метод степенного ряда			
	В) Метод интегрирования по контуру			
	Г) Метод Крамера			
	4. Что определяет передаточная функция цифровой системы?			
	А) Отношение выходного сигнала ко входному в частотной области			
	Б) Отношение Z-изображений выхода ко входу при нулевых начальных			
	условиях			
	В) Временную зависимость реакции системы на произвольный вход			
	Г) Все вышеперечисленное			
	5. Какое уравнение описывает линейную стационарную импульсную			
	систему?			
	А) Алгебраическое уравнение			
	Б) Дифференциальное уравнение			
	В) Разностное уравнение			
	Г) Интегральное уравнение			
	6. Какое соединение звеньев требует применения операции свёртки для			
	определения эквивалентной передаточной функции?			
	А) Последовательное			
	Б) Параллельное			
	В) Обратная связь			
	Г) Ни одно из перечисленных			
	7. Как изменяется устойчивость системы с увеличением периода			
	квантования Т?			
	А) Увеличивается			
	Б) Не изменяется			
	В) Уменьшается			
	Г) Может как увеличиться, так и уменьшиться			
	8. Какой критерий позволяет оценить устойчивость замкнутой			
	импульсной системы по АФЧХ разомкнутой системы?			
	А) Критерий Гурвица			
	Б) Критерий Найквиста			
	В) Критерий Михайлова			

- Г) Критерий Шур–Кона
- 9. Какой параметр характеризует быстродействие системы?
- А) Перерегулирование
- Б) Время регулирования
- В) Установившаяся ошибка
- Г) Колебательность
- 10. Какая характеристика определяет реакцию системы на единичный импульс?
- А) Переходная функция
- Б) Частотная характеристика
- В) Весовая функция
- Г) Логарифмическая амплитудно-частотная характеристика
- 11. Какой элемент используется для преобразования аналогового сигнала в цифровой?
- А) Цифро-аналоговый преобразователь
- Б) Аналогово-цифровой преобразователь
- В) Фильтр нижних частот
- Г) Компаратор
- 12. Какой вид имеет условие устойчивости импульсной системы в z-области?
- А) Корни находятся внутри единичной окружности
- Б) Корни находятся вне единичной окружности
- В) Корни находятся на мнимой оси
- Г) Корни находятся слева от мнимой оси
- 13. Каким образом можно определить установившуюся ошибку системы при ступенчатом воздействии?
- А) По теореме о конечном значении Z-преобразования
- Б) По теореме о начальном значении
- В) По переходной характеристике
- Г) По частотной характеристике
- 14. Какой тип модели используется для представления поведения цифровой системы в MATLAB/Simulink?
- А) Передаточная функция
- Б) Разностное уравнение
- В) Схема с запаздыванием
- Г) Все вышеперечисленные

6.4. Оценочные шкалы

6.4.1. Оценивание текущего контроля

Целью проведения текущего контроля является достижение уровня результатов обучения в соответствии с индикаторами компетенций.

Текущий контроль может представлять собой письменные индивидуальные задания состоящие из 3-5 вопросов или в форме тестовых заданий по изученным темам до проведения промежуточной аттестации. Рекомендованный планируемый период проведения текущего контроля за 3 недели до промежуточной аттестации.

Шкала оценивания при тестировании

Оценка	Критерии выставления оценки		
Зачтено	Количество верных ответов в интервале: 71-100%		
Не зачтено	Количество верных ответов в интервале: 0-70%		

Шкала оценивания при письменной работе

	1		1
Оценка]	Критерии выст	авления оценки

	обучающийся должен:			
Зачтено	- продемонстрировать общее знание изучаемого материала;			
	- показать общее владение понятийным аппаратом дисциплины;			
	- уметь строить ответ в соответствии со структурой излагаемого			
	вопроса;			
	- знать основную рекомендуемую программой учебную литературу.			
	обучающийся демонстрирует:			
Не зачтено	- незнание значительной части программного материала;			
	- не владение понятийным аппаратом дисциплины;			
	- существенные ошибки при изложении учебного материала;			
	- неумение строить ответ в соответствии со структурой излагаемого			
	вопроса;			
	- неумение делать выводы по излагаемому материалу			

6.4.2. Оценивание самостоятельной письменной работы (контрольной работы, эссе)

При оценке учитывается:

- 1. Правильность оформления
- 2. Уровень сформированности компетенций.
- 3. Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
- 4. Уровень знания фактического материала в объеме программы.
- 5. Логика, структура и грамотность изложения письменной работы.
- 6. Полнота изложения материала (раскрытие всех вопросов)
- 7. Использование необходимых источников.
- 8. Умение связать теорию с практикой.
- 9. Умение делать обобщения, выводы.

Шкала оценивания контрольной работы и эссе

	ткала оценивания контрольной рассты и эссе		
Оценка	Критерии выставления оценки		
Зачтено	Обучающийся должен:		
	- продемонстрировать общее знание изучаемого материала;		
	- показать общее владение понятийным аппаратом дисциплины;		
	- уметь строить ответ в соответствии со структурой излагаемого		
	вопроса;		
	- знать основную рекомендуемую программой учебную литературу.		
Не зачтено	Обучающийся демонстрирует:		
	- незнание значительной части программного материала;		
	- не владение понятийным аппаратом дисциплины;		
	- существенные ошибки при изложении учебного материала;		
	- неумение строить ответ в соответствии со структурой излагаемого		
	вопроса;		
	- неумение делать выводы по излагаемому материалу		

6.4.3. Оценивание ответов на вопросы и выполнения заданий промежуточной аттестации

При оценке знаний учитывается уровень сформированности компетенций:

- 1. Уровень усвоения теоретических положений дисциплины, правильность формулировки основных понятий и закономерностей.
- 2. Уровень знания фактического материала в объеме программы.
- 3. Логика, структура и грамотность изложения вопроса.
- 4. Умение связать теорию с практикой.
- 5. Умение делать обобщения, выводы.

Шкала оценивания на экзамене, зачете с оценкой

Шк	ала оценивания на экзамене, зачете с оценкой			
Оценка	Критерии выставления оценки			
Отлично	Обучающийся должен:			
	- продемонстрировать глубокое и прочное усвоение знаний			
	программного материала;			
	- исчерпывающе, последовательно, грамотно и логически стройно			
	изложить теоретический материал;			
	- правильно формулировать определения;			
	- продемонстрировать умения самостоятельной работы с			
	литературой;			
	- уметь сделать выводы по излагаемому материалу.			
Хорошо	Обучающийся должен:			
_	- продемонстрировать достаточно полное знание программного			
	материала;			
	- продемонстрировать знание основных теоретических понятий;			
	- достаточно последовательно, грамотно и логически стройно			
	излагать материал;			
	- продемонстрировать умение ориентироваться в литературе;			
	- уметь сделать достаточно обоснованные выводы по излагае			
	материалу.			
Удовлетворительно	Обучающийся должен:			
•	- продемонстрировать общее знание изучаемого материала;			
	- показать общее владение понятийным аппаратом дисциплины;			
	- уметь строить ответ в соответствии со структурой излагаемого			
	вопроса;			
	- знать основную рекомендуемую программой учебную			
	литературу.			
Неудовлетворительно	Обучающийся демонстрирует:			
•	- незнание значительной части программного материала;			
	- не владение понятийным аппаратом дисциплины;			
	- существенные ошибки при изложении учебного материала;			
	- неумение строить ответ в соответствии со структурой			
	излагаемого вопроса;			
	- неумение делать выводы по излагаемому материалу.			

Шкала оценивания на зачете

Оценка	Критерии выставления оценки			
Зачтено	Обучающийся должен: уметь строить ответ в соответствии со			
	структурой излагаемого вопроса; продемонстрировать прочное,			
	достаточно полное усвоение знаний программного материал			
	продемонстрировать знание основных теоретических понятий			
	правильно формулировать определения; последовательно,			
	грамотно и логически стройно изложить теоретический материал;			
	продемонстрировать умения самостоятельной работы с			
	литературой; уметь сделать достаточно обоснованные выводы по			
	излагаемому материалу.			
Не зачтено	Обучающийся демонстрирует: незнание значительной части			
	программного материала; не владение понятийным аппаратом			
	дисциплины; существенные ошибки при изложении учебного			
	материала; неумение строить ответ в соответствии со структурой			

излагаемого	вопроса;	неумение	делать	выводы	по	излагаемому
материалу.						

6.4.4. Тестирование

Шкала оценивания

Оценка	Критерии выставления оценки
Отлично	Количество верных ответов в интервале: 71-100%
Хорошо	Количество верных ответов в интервале: 56-70%
Удовлетворительно	Количество верных ответов в интервале: 41-55%
Неудовлетворительно	Количество верных ответов в интервале: 0-40%
Зачтено	Количество верных ответов в интервале: 41-100%
Не зачтено	Количество верных ответов в интервале: 0-40%

6.5. Методические материалы, определяющие процедуру оценивания сформированных компетенций в соответствии с ООП

Качество знаний характеризуется способностью обучающегося точно, структурированно и уместно воспроизводить информацию, полученную в процессе освоения дисциплины, в том виде, в котором она была изложена в учебном издании или преподавателем.

Умения, как правило, формируются на занятиях семинарского типа. Задания, направленные на оценку умений, в значительной степени требуют от обучающегося проявления стереотипности мышления, т.е. способности выполнить работу по образцам, с которыми он работал в процессе обучения. Преподаватель же оценивает своевременность и правильность выполнения задания.

Навыки можно трактовать как автоматизированные умения, развитые и закрепленные осознанным самостоятельным трудом. Навыки формируются при самостоятельном выполнении обучающимися практико- ориентированных заданий, моделирующих решение им производственных и социокультурных задач в соответствующей области профессиональной деятельности, как правило, при выполнении домашних заданий, курсовых проектов (работ), научно-исследовательских работ, прохождении практик, при работе индивидуально или в составе группы и т.д.

Устный опрос – это процедура, организованная как специальная беседа преподавателя с группой обучающихся (фронтальный опрос) или с отдельными обучающимися (индивидуальный опрос) с целью оценки сформированности у них основных понятий и усвоения учебного материала. Устный опрос может использоваться как вид контроля и метод оценивания формируемых компетенций (как и качества их формирования) в рамках самых разных форм контроля, таких как: собеседование, коллоквиум, зачет, экзамен по дисциплине. Устный опрос (УО) позволяет оценить знания и кругозор обучающегося, умение логически построить ответ, владение монологической речью и иные коммуникативные навыки. УО обладает большими возможностями воспитательного воздействия преподавателя. Воспитательная функция УО имеет ряд важных аспектов: профессионально-этический и нравственный аспекты, дидактический (систематизация материала при ответе, лучшее запоминание материала при интеллектуальной концентрации), эмоциональный (радость от успешного прохождения собеседования) и др. Обучающая функция УО состоит в выявлении деталей, которые по каким-то причинам оказались недостаточно осмысленными в ходе учебных занятий и при подготовке к зачёту или экзамену. УО обладает также мотивирующей функцией: правильно организованные собеседование, коллоквиум, зачёт и экзамен могут стимулировать учебную деятельность студента, его участие в научной работе.

Тесты являются простейшей формой контроля, направленной на проверку владения терминологическим аппаратом, современными информационными технологиями и конкретными знаниями в области фундаментальных и прикладных дисциплин. Тест может предоставлять возможность выбора из перечня ответов (один или несколько правильных ответов).

Семинарские занятия. Основное назначение семинарских занятий по дисциплине — обеспечить глубокое усвоение обучающимися материалов лекций, прививать навыки самостоятельной работы с литературой, воспитывать умение находить оптимальные решения в условиях изменяющихся отношений, формировать современное профессиональное мышление обучающихся. На семинарских занятиях преподаватель проверяет выполнение самостоятельных заданий и качество усвоения знаний, умений, определяет уровень сформированности компетенций.

Коллоквиум может служить формой не только проверки, но и повышения производительности труда студентов. На коллоквиумах обсуждаются отдельные части, разделы, темы, вопросы изучаемого курса, обычно не включаемые в тематику семинарских и других практических учебных занятий, а также рефераты, проекты и иные работы обучающихся.

Доклад, сообщение – продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебно-практической, учебно-исследовательской или научной темы.

Контрольная работа — средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу.

Профессионально-ориентированное эссе — это средство, позволяющее оценить умение обучающегося письменно излагать суть поставленной проблемы, самостоятельно проводить анализ этой проблемы с использованием аналитического инструментария соответствующей дисциплины, делать выводы, обобщающие авторскую позицию по поставленной профессионально-ориентированной проблеме.

Реферат — продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на нее.

Ситуационный анализ (кейс) — это комплексный анализ ситуации, имевший место в реальной практике профессиональной деятельности специалистов. Комплексный анализ включает в себя следующие составляющие: причинно-следственный анализ (установление причин, которые привели к возникновению данной ситуации, и следствий ее развертывания), системный анализ (определение сущностных предметно-содержательных характеристик, структуры ситуации, ее функций и др.), ценностно-мотивационный анализ (построение системы оценок ситуации, ее составляющих, выявление мотивов, установок, позиций действующих лиц); прогностический анализ (разработка перспектив развития событий по позитивному и негативному сценарию), рекомендательный анализ (выработка рекомендаций относительно поведения действующих лиц ситуации), программно-целевой анализ (разработка программ деятельности для разрешения данной ситуации).

Творческое задание — это частично регламентированное задание, имеющее нестандартное решение и позволяющее диагностировать умения интегрировать знания различных научных областей, аргументировать собственную точку зрения, доказывать правильность своей позиции. Может выполняться в индивидуальном порядке или группой обучающихся.

Деловая и/или ролевая игра — совместная деятельность группы обучающихся и преподавателя под управлением преподавателя с целью решения учебных и профессионально-ориентированных задач путем игрового моделирования реальной проблемной ситуации. Позволяет оценивать умение анализировать и решать типичные профессиональные задачи.

«Круглый стол», дискуссия – интерактивные оценочные средства, позволяющие включить обучающихся в процесс обсуждения спорного вопроса, проблемы и оценить их умение аргументировать собственную точку зрения. Занятие может проводить по традиционной (контактной) технологии, либо с использованием телекоммуникационных технологий.

Проект — конечный профессионально-ориентированный продукт, получаемый в результате планирования и выполнения комплекса учебных и исследовательских заданий. Позволяет оценить умения обучающихся самостоятельно конструировать свои знания в процессе решения практических задач и проблем, ориентироваться в информационном пространстве и уровень сформированности аналитических, исследовательских навыков, навыков практического

и творческого мышления. Может выполняться в индивидуальном порядке или группой обучающихся.

Раздел 7. Методические указания для обучающихся по основанию дисциплины

Освоение обучающимся учебной дисциплины предполагает изучение материалов дисциплины на аудиторных занятиях и в ходе самостоятельной работы. Аудиторные занятия проходят в форме лекций, семинаров и практических занятий. Самостоятельная работа включает разнообразный комплекс видов и форм работы обучающихся.

Для успешного освоения учебной дисциплины и достижения поставленных целей необходимо внимательно ознакомиться с настоящей рабочей программы учебной дисциплины. Следует обратить внимание на список основной и дополнительной литературы, которая имеется в электронной библиотечной системе Университета. Эта информация необходима для самостоятельной работы обучающегося.

При подготовке к аудиторным занятиям необходимо помнить особенности каждой формы его проведения.

Подготовка к учебному занятию лекционного типа. С целью обеспечения успешного обучения обучающийся должен готовиться к лекции, поскольку она является важнейшей формой организации учебного процесса, поскольку: знакомит с новым учебным материалом; разъясняет учебные элементы, трудные для понимания; систематизирует учебный материал; ориентирует в учебном процессе.

С этой целью: внимательно прочитайте материал предыдущей лекции; ознакомьтесь с учебным материалом по учебнику и учебным пособиям с темой прочитанной лекции; внесите дополнения к полученным ранее знаниям по теме лекции на полях лекционной тетради; запишите возможные вопросы, которые вы зададите лектору на лекции по материалу изученной лекции; постарайтесь уяснить место изучаемой темы в своей подготовке; узнайте тему предстоящей лекции (по тематическому плану, по информации лектора) и запишите информацию, которой вы владеете по данному вопросу

Предварительная подготовка к учебному занятию семинарского типа заключается в изучении теоретического материала в отведенное для самостоятельной работы время, ознакомление с инструктивными материалами с целью осознания задач занятия.

Самостоятельная работа. Для более углубленного изучения темы задания для самостоятельной работы рекомендуется выполнять параллельно с изучением данной темы. При выполнении заданий по возможности используйте наглядное представление материала.

Подготовка к зачету, экзамену. К зачету, экзамену необходимо готовится целенаправленно, регулярно, систематически и с первых дней обучения по данной дисциплине. Попытки освоить учебную дисциплину в период зачетно-экзаменационной сессии, как правило, приносят не слишком удовлетворительные результаты. При подготовке к зачету обратите внимание на защиту практических заданий на основе теоретического материала. При подготовке к экзамену по теоретической части выделите в вопросе главное, существенное (понятия, признаки, классификации и пр.), приведите примеры, иллюстрирующие теоретические положения.

7.1. Методические рекомендации по написанию эссе

Эссе (от французского essai – опыт, набросок) – жанр научно-публицистической литературы, сочетающей подчеркнуто-индивидуальную позицию автора по конкретной проблеме.

Главными особенностями, которые характеризуют эссе, являются следующие положения:

- собственная позиция обязательно должна быть аргументирована и подкреплена ссылками на источники, авторитетные точки зрениями и базироваться на фундаментальной науке. Небольшой объем (4—6 страниц), с оформленным списком литературы и сносками на ее использование;
- стиль изложения научно-исследовательский, требующий четкой, последовательной и логичной системы доказательств; может отличаться образностью, оригинальностью, афористичностью, свободным лексическим составом языка;

• исследование ограничивается четкой, лаконичной проблемой с выявлением противоречий и разрешением этих противоречий в данной работе.

7.2. Методические рекомендации по использованию кейсов

Кейс-метод (Case study) — метод анализа реальной ситуации, описание которой одновременно отражает не только какую-либо практическую проблему, но и актуализирует определенный комплекс знаний, который необходимо усвоить при разрешении данной проблемы. При этом сама проблема не имеет однозначных решений.

Кейс как метод оценки компетенций должен удовлетворять следующим требованиям:

- соответствовать четко поставленной цели создания;
- иметь междисциплинарный характер;
- иметь достаточный объем первичных и статистических данных;
- иметь соответствующий уровень сложности, иллюстрировать типичные ситуации, иметь актуальную проблему, позволяющую применить разнообразные методы анализа при поиске решения, иметь несколько решений.

Кейс-метод оказывает содействие развитию умения решать проблемы с учетом конкретных условий и при наличии фактической информации. Он развивает такие квалификационные характеристики, как способность к проведению анализа и диагностики проблем, умение четко формулировать и высказывать свою позицию, умение общаться, дискутировать, воспринимать и оценивать информацию, которая поступает в вербальной и невербальной форме.

7.3. Требования к компетентностно-ориентированным заданиям для демонстрации выполнения профессиональных задач

Компетентностно-ориентированное задание — это всегда практическое задание, выполнение которого нацелено на демонстрирование доказательств наличия у обучающихся общекультурных, общепрофессиональных и профессиональных компетенций, знаний, умений, необходимых для будущей профессиональной деятельности.

Компетентностно-ориентированные задания бывают разных видов:

- направленные на подготовку конкретного практико-ориентированного продукта (анализ документов, текстов, критика, разработка схем и др.);
- аналитического и диагностического характера, направленные на анализ различных аспектов и проблем;
- связанные с выполнением основных профессиональных функций (выполнение конкретных действий в рамках вида профессиональной деятельности, например, формулирование целей миссии, и т. п.).

Раздел 8. Учебно-методическое и информационное обеспечение дисциплины Основная литература²

- 1. Виноградов, М. В. Цифровые системы управления: учебное пособие / М. В. Виноградов, Е. М. Самойлова. 2-е изд. Москва: Ай Пи Ар Медиа, 2024. 115 с. ISBN 978-5-4497-3424-2. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/142115.html
- 2. Цифровые технологии в системе управления «умными городами»: научно-аналитический сборник / А. В. Путилов, В. А. Тупчиенко, С. Р. Баисова [и др.]; под редакцией В. А. Тупчиенко. Москва: Научный консультант, 2022. 310 с. ISBN 978-5-907084-69-8. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/147023.html

-

² Из ЭБС

Дополнительная литература³

- 1. Меняев, М. Ф. Цифровые технологии в управлении предприятием: учебник / М. Ф. Меняев. Москва: Ай Пи Ар Медиа, 2025. 177 с. ISBN 978-5-4497-4343-5. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/150465.html
- 2. Калихман, Д. М. Математическое моделирование мехатронных систем. В 3 частях. Ч.3. Цифровые системы управления гироскопических измерителей угловой скорости, акселерометров и прецизионных поворотных стендов с инерциальными чувствительными элементами: учебно-методическое пособие / Д. М. Калихман, Е. А. Депутатова, Ю. В. Садомцев. Саратов: Саратовский государственный технический университет, 2021. 88 с. ISBN 978-5-7433-3448-3. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/122626.html

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине: интернет-ресурсы, современные профессиональные базы данных, информационные справочные системы

Интернет-ресурсы

URL: https://www.IPRsmarthop.ru/ – электронно-библиотечная система IPRsmart.

Информационно-справочные и поисковые системы

Справочная правовая система «КонсультантПлюс»: http://www.con-sultant.ru

Современные профессиональные базы данных

URL:http://www.edu.ru/ – библиотека федерального портала «Российское образование»

URL:http://www.prlib.ru – Президентская библиотека

URL:http://www.rusneb.ru — Национальная электронная библиотека

URL:http://elibrary.rsl.ru/ – сайт Российской государственной библиотеки (раздел «Электронная библиотека»)

URL:http://elib.gnpbu.ru/ – сайт Научной педагогической электронной библиотеки им. К.Д. Ушинского

Комплект лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства

Комплект лицензионного программного обеспечения

Операционная система "Атлант" - Atlant Academ от 24.01.2024 г. (бессрочно)

Антивирусное программное обеспечение ESET NOD32 Antivirus Business Edition договор № ИС00-006348 от 14.10.2022 г. (срок действия до 13.10.2025 г.)

Программное обеспечение «Мираполис» система вебинаров - Лицензионный договор №107/06/24-к от 27.06.2024 (Спецификация к Лицензионному договору№107/06/24-к от 27.06.2024 г., срок действия с 01.07.2024 по 31.07.2025 г.)

Электронная информационно-образовательная среда «1С: Университет» договор от 10.09.2018 г. №ПРКТ-18281 (бессрочно)

Система тестирования Indigo лицензионное соглашение (Договор) от 07.11.2018 г. №Д-54792 (бессрочно)

Информационно-поисковая система «Консультант Плюс» - Договор №МИ-ВИП-79717-56/2022 (бессрочно)

Электронно-библиотечная система IPRsmart лицензионный договор от 01.09.2024 г. №11652/24C (срок действия до 31.08.2027 г.)

Научная электронная библиотека eLIBRARY лицензионный договор SCIENC INDEX № SIO -3079/2025 от 28.01.2025 г. (срок действия до 27.01.2026 г.)

Программное обеспечение отечественного производства:

Операционная система "Атлант" - Atlant Academ от 24.01.2024 г. (бессрочно)

Электронная информационно-образовательная среда «1С: Университет» договор от 10.09.2018 г. №ПРКТ-18281 (бессрочно)

-

³ Из ЭБС

Система тестирования Indigo лицензионное соглашение (Договор) от 07.11.2018 г. №Д-54792 (бессрочно)

Информационно-поисковая система «Консультант Плюс» - Договор №МИ-ВИП-79717-56/2022 (бессрочно)

Электронно-библиотечная система IPRsmart лицензионный договор от 01.09.2024~г. N011652/24C (срок действия до 31.08.2027~г.)

Научная электронная библиотека eLIBRARY лицензионный договор SCIENC INDEX № SIO -3079/2025 от 28.01.2025 г. (срок действия до 27.01.2026 г.)

Электронно-библиотечная система:

Электронная библиотечная система (ЭБС): http://www.iprbookshop.ru/

Раздел 9. Материально-техническое обеспечение образовательного процесса

Учебная аудитория для проведения	Оборудование: специализированная мебель (мебель				
занятий лекционного типа, занятий	аудиторная (11 столов, 22 стула, доска аудиторная				
семинарского типа, групповых и	навесная), стол преподавателя, стул преподавателя.				
индивидуальных консультаций,	Технические средства обучения: персональный				
текущего контроля и промежуточной	компьютер; мультимедийное оборудование				
аттестации	(проектор, экран); регистры специального				
	назначения; регистры сдвига; система прерываний				
	микроконтроллера; интегрированный электронный				
	модуль генератора сигнала с широтно- импульсной				
	модуляцией микроконтроллера; архитектура и				
	основные технические характеристики				
	микроконтроллера; порты ввода-вывода				
	микроконтроллера; интегрированный электронный				
	модуль последовательной синхронной связи				
Помещение для самостоятельной	Специализированная мебель (9 столов, 9 стульев),				
работы	персональные компьютеры с возможностью				
	подключения к сети «Интернет» и обеспечением				
	доступа в электронную информационно-				
	образовательную среду Университета				